

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

VISCOUS PROPERTIES OF QUARK-GLUON PLASMA AND THEIR COSMIC IMPACTS

Thesis submitted for the degree of Master in physics to

Physics Department
Faculty of Women for Arts, Science and Education,
Ain Shams University

By Eman Mohamed Abdel Hakk Ali

B.Sc. in Physics and Computer, Ain Shams University, 2011

Under Supervision of:

- 1- **Prof. Dr. D.Sc. Abdel Nasser Tawfik**, Professor of Physics and Engineering Mathematics, Director at World Lab for Cosmology and Physics (WLCAPP) Nile University.
- 2- **Prof. Dr. Afaf Nada**, Professor of Nuclear physics, Physics department, Faculty of Women for Arts, Science and Education, Ain Shams university.
- 3- Dr. Hayam Yassin, Associate Professor of theoretical physics, Physics department, Faculty of Women for Arts, Science and Education, Ain Shams university.

Physics Department
Faculty of Women for Arts, Science and Education,
Ain Shams University
(2021)

VISCOUS PROPERTIES OF QUARK-GLUON PLASMA AND THEIR COSMIC IMPACTS

Name of the student: Eman Mohamed Abdel Hakk Ali Under Supervision of:

- 1- Prof. Dr. D.Sc. Abdel Nasser Mahmoud Tawfik, Professor of Physics and Engineering Mathematics, Director at World Lab for Cosmology and Physics (WLCAPP) Nile University.
- 2- Prof. Dr. Afaf Nada, Professor of Nuclear physics, Physics department, Faculty of Women for Arts, Science and Education, Ain Shams university.
- 3- Dr. Hayam Yassin, Associate Professor of theoretical physics, Physics department, Faculty of Women for Arts, Science and Education, Ain Shams university.

Physics Department
Faculty of Women for Arts, Science and Education,
Ain Shams University
(2021)

CONTENTS

\mathbf{C}	ontents		P	'ag	e No.
	Acknowled	$_{ m dgments}$;		\mathbf{v}
	Abstract				vii
	Summary				xi
	Notation				xv
In	troduction				1
1	Relativisti	ic fluid			2
	1.1	Outline	s of relativistic kinetic theory		2
	1.2	Element	ts of relativistic kinetic theory		2
		1.2.1	Particle Four flow		2
		1.2.2	Energy momentum tensor		3
		1.2.3	Entropy four-flow		4
		1.2.4	Eckart Definition		4
		1.2.5	Landau and lifshitz definition		
		1.2.6	Israel definition evolution		
		1.2.7	Results For a Simple Fluid		11
2	General re	elativity			15
	2.1	Einstein	n equations		15
		2.1.1	Simple Introduction to general relativity		15
		2.1.2	Christoffel symbols (derivative it called Riman tensor)		20
		2.1.3	Stress energy momentum tensor and cosmological constant		23
		2.1.4	How Friedman equation depend on equation of state		27
		2.1.5	Equation of state (EoS)		27
		2.1.6	Eckart model		29
		2.1.7	Israel-Stewart model		30
3	Inflation of	r evolu	tion of Universe		31
	3.1	The exp	panding fireball and phase transformation		31
	3.2	Dispers	ion cosmology		31
	3.3	Quarks	and gluons		32

	3.4	The had	lronic phase transition in the early Universe	34	
	3.5	Conserv	ing of entropy	36	
	3.6	The dyn	namic Universe	37	
	3.7	QGP an	nd confined hadronic-gas phases	38	
	3.8	Quantur	m Chromodynamics (QCD)	39	
	3.9 Lattice Quantum Chromodynamics (LQCD)				
	3.10	3.10 Back to Big Bang			
	3.11	1 Relativistic Heavy Ion Collider (RHIC)			
	3.12 Large Hadrons Collider LHC				
4 Res	ults an	d discus	ssion	44	
	4.1	Introduc	ction	44	
	4.2	The star	ndard cosmological model	45	
4.3 The effect of viscous and non-viscous closed system			ct of viscous and non-viscous closed system	45	
		4.3.1	Approximation solution or result from fitting data of viscous and non-viscous	49	
			parameter for non-viscous and viscous cosmos	50	
		4.3.3	Expressions for the energy density for non-viscous and viscous cosmic	51	
		4.3.4	Expressions for the bulk viscosity for non-viscous and viscous cosmic	52	
	4.4	Cosmic	Evolution of Viscous QCD Epoch in Causal Eckart Frame	53	
		4.4.1	Friedmann equations in Eckart frame	53	
		4.4.2	Equations of state of viscous QCD matter	55	
		4.4.3	Evolution of the cosmic parameters	57	
Conclu	sion			67	
Arabic	Sumn	nary		68	
Bibliog	raphy			68	

Acknowledgments

Acknowledgments

First of all I would like to aver that I am greatly indebted to **ALLAH** the most merciful and the most gracious for unlimited blesses on me.

Second, I would like to express my deepest gratitude to my advisors, **Prof. Dr. D.Sc. Abdel Nasser Tawfik**, (Professor of Physics and Engineering Mathematics, Nile University), **Prof. Dr. Afaf Nada**, (Professor of Nuclear Physics, Faculty of Women for Arts, Science and Education), for their thoughtful guidance during my graduate study in the past one years. I enjoy to work with them very much.

Also, I'd like to express my grateful to **Dr. Hayam Yassin**, (Associate Professor of theoretical physics, Faculty of Women for Arts, Science and Education) also for my fortunately study for me in my graduate study in the past two years. She helped me to learn right way of researches and theoretical physics and has most a patience to learn and listen me. Through out her help in learning me the various computational techniques especially with mathematica program. I have really learned from her so much. I'd like to thank **Dr. Eman Reda** for her help on the thesis's review and her help in dealing with the different mathematical issues. They led me to a fantastic research area. They provided me with all kinds of opportunities to broaden my horizon and allow me to grow up as a scientist. Especially, I thank them for their patience, encouragement and continuous support even during the hardest times of my research without which my early research would not have found its proper direction.

I would like to especially thank **Prof. Dr. D.Sc. Tawfik** for giving me the opportunity to work under his great supervision and giving me the opportunity to be one of the ECTPs. Also I enjoy the research atmosphere he created for me, through which I learned a lot from him and the other **ECTP members**.

Last but not least, I would like thank my parents, my husband and my sister for their unstinting love and support.

Abstract

Abstract

We condensate on the application and impacts of viscous Quark-gluon-plasma into the early Universe cosmology, Considering Friedmann-Lemaitre-Robertson-Walker Universe which the evolution is a flat, isotropic and homogeneous. First, take a simple system (closed system) which consists of one particle and one photon which particle represent matter and photon represent radiation. Other components such as dark matter and dark energy (cosmological constant) are not taken into consideration. By introducing a toy model based on a thermodynamical approach in order to propose a framework for finite bulk viscosity for the cosmic background (Friedmann-model). By applying thermodynamics in order to drive expressions for various cosmological quantities, such as the scale factor a(t) and the Hubble parameter H(t), energy density ρ and bulk viscosity ζ . Throughout this work, assume natural units for all physical quantities. Then, take open system and determine the equation of state and related with temperature and time dependence, properties of QGP, evolution of the cosmic parameters, the bulk viscose pressure related with Hubble parameter and time plank. From LQCD data, finding proposal equations represented in relation of energy density ρ , pressure p, with temperature T and related by equation of state (EoS). Entropy density s, speed of sound squared C_s^2 , bulk viscosity ζ , shear viscosity η and ratios of coefficient of viscosity related to temperature T. Proposal equation between temperature T and time t, wherefore determine proposal equation of Hubble parameter H(t) and the scale factor a(t) related with temperature T. Finally, the cosmological parameter of second order of causal Eckart frame is determined i.e. (first derivative of the Hubble parameter H(t), energy density ρ and bulk viscosity ζ and shear viscosity η and bulk viscous pressure Π .

LIST OF FIGURES

No.	Title Page	No
2.1	Two panels illustrate the principle of equivalence	16
2.2	Light bending in gravitational led	18
2.3	Depiction curved cone	22
2.4	Panel a shows the depiction of curvature path, while panel b depicts the depiction	
	of parallel diagram	22
3.1	The formation of the constitute of the Universe after the evolution of the Universe.	32
3.2	Standard model of elementary particles	33
3.3	Matter and force carriers	34
4.1	Left-hand panel depicts the dependence of the scale factor $a(t)$ on the co-moving	
	time t . The right-hand panel presents the Hubble parameter $H(t)$ in dependence on	
	t. All physical quantities are given in neutral units.	51
4.2	The energy density $\rho(t)$ is given in dependence of the co-moving time t for particle	
	only (non-viscous), one particle and one photon (in non-viscous) and one particle	
	and one photon (in viscous cosmic background), depicted as dotted, dashed, and	
	solid curves, respectively.	52
4.3	The bulk viscosity $\xi(t)$ is given in dependence of the co-moving time t . Panel (a)	
	shows the temporal dependence of ζ for one particle. Panel (b) shows the same but	
	here for one particle and one photon	53
4.4	Pressure p as a function of the temperature T . The lattice QCD calculations are	
	given by symbols, while the solid curve refers to the proposed expression, Eq. (4.40).	. 59
4.5	Left-hand panel: The temperature T as a function of the energy density ρ .	
	The right–hand panel: The dependence of the energy density ρ on the tempera-	
	ture T . The lattice QCD calculations are given by symbols, while the solid curves	
	stand to the proposed expressions, Eqs. (4.41),(4.42), respectively	60
4.6	Pressure p as a function of the energy density ρ . The lattice QCD calculations are	
	given by symbols. The statistical fit, Eq. (4.43) is depicted by the solid curve	60
4.7	The speed of sound squared c_s^2 as a function of T . The lattice QCD calculations are	
	given by symbols. Eq. (4.51) is depicted by the solid curve	60

4.8	The dependence of the ratio ζ/η on the temperature T. Calculations from Eq. (4.45)	
	and from previous studies are given by symbols, while calculations from Eq. (4.46)	
	are presented by the solid curve	61
4.9	Entropy density s as a function of temperature T . Calculations from Eq. (4.47) are	
	given by symbols, while calculations from Eq. (4.48) are depicted as the solid curve.	61
4.10	The dependence of the ratio ζ/s on the temperature T . The solid curve depicts	
	Eq. (4.50), while calculations using Eq. (4.49) are given by the symbols	61
4.11	Left–hand panel shows the dependence of the bulk viscosity ζ on the temperature	
	T. Solid curve refers to our calculations using Eq. (4.51) , while calculations using	
	Eq. (4.52) given by the dashed curve. The right -hand panel depicts the dependence	
	of the shear viscosity η on the temperature T . Our calculations using Eq. (4.53) is	
	represented as the solid curve, while results from Eq. (4.54) are given by the dashed	
	curve	62
4.12	Temperature as a function of t, at the bag constant $B^{1/4} = 200$ MeV, on time t.	
	The symbols refer to the results taken from Tawfik work, while the solid curve refers	
	to their statistical fit, Eq. (4.55)	63
4.13	The temperature as function of the Hubble parameter $H, \text{ Eq. } (4.36).$ The solid	
	curve refers to Eq. (4.57)	64
4.14	The left-panel depicts the dependence of the second-order derivative of the scale	
	factor $a(t)$ on the co-moving time t during the quark-hadron phase transition, at bag	
	constant $B^{1/4} = 200$ MeV. Our fit to Eq. (4.60) are depicted by the solid curve.	
	The right-panel shows the dependence of the scale factor $a(T)$ on the temperature	
	T which given in Eq. (4.61), while solid curve presents Eq. (4.62)	64
4.15	The second-order derivative of the cosmological parameters \dot{H} , $\dot{\rho}$, $\dot{\zeta}$, and $e\dot{t}a$ in	
	dependence of the co-moving time are depicted in panels (a-d), respectively. Symbols	
	refer to our calculations using Eqs. (4.38) , (4.64) , (4.67) and (4.69) , respectively.	65
4.16	The bulk viscous pressure Π as a function of the Hubble parameter $H.$ Calculations	
	using non-casual Eckart theory depicts as circle symbols while calculations using	
	casual Eckart theory represented by square symbols. Solid curve shows the proposed	
	expression for the dependence of Π on H	65

Summary