

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The effect of low dose nalbuphine or ketamine in the prevention of emergence agitation after sevoflurane anesthesia in children undergoing tonsillectomy with or without adenoidectomy

Thesis
Submitted for partial fulfillment of M.Sc. degree in Anesthesiology

By

Yasser Alaa Abdalmonem Ismail

M.B.B.Ch

Supervised by

Prof. Dr. Zakaria Abdelaziz Mostafa

Prof. of Anesthesiology, I.C.U and Pain Management
Faculty of medicine Ain shams University

Dr. Tarek Mohamed Ahmed Ashor

Lecturer of Anesthesiology, I.C.U and Pain Management
Faculty of medicine Ain shams University

Dr. Diaaeldein Mahmoud Haiba

Lecturer of Anesthesiology, I.C.U and Pain Management
Faculty of medicine Ain shams University

Acknowledgement

First of all, all gratitude is due to Allaha for blessing this work until it has reached its end as a part of his generous help throughout my life.

Really I can hardly find the words to express my gratitude to Prof. Dr. Zakaria Abdelaziz Mostafa, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his supervision, continuous, help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Dr. Tarek Mohamed Ahmed Ashor, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Dr Diaaeldein Mahmoud Haiba., Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

List of Contents

Content	Page
Introduction	1
Aim of the work	4
Review of literature	5
Patients and Methods	29
Results	38
Discussion	48
Conclusion	53
Summary	54
References	56
Arabic Summary	66

List of Tables

Table No.	Title	Page No.
Table (1)	Demographic data.	36
Table (2)	Incidence of emergence agitation between groups.	38
Table (4)	Frequency, timing of administration and total dose of midazolam given as rescure management for agitatation.	41
Table (5)	Frequency and timing of postoperative pain using (mCHEOPS).	43
Table (6)	Frequency of complications and time to hospital discharge between groups.	45

List of Figures

Fig. No.	Title	Page No.
Fig. (1)	Incidence of emergence agitation between groups using emergence agitation scale.	39
Fig. (2)	Distribution of patients according to the Emergence Agitation Scale.	40
Fig. (3)	number of patient received midazolam in each group.	42
Fig. (4)	frequency and timing of postoperative pain using mCHEOPS	44
Fig. (5)	showed number of patient that happen to have complication in each group namely incidence of laryngeal spasm, incidence of nausea and vomiting and incidence of post tonsillectomy bleeding.	46
Fig. (6)	showed time to hospital discharge in each group	47

List of Abbreviations

Abb.	Full term
5-HT	5-Hydroxytryptamine
ALT	Alanine Aminotransferase
ASA	American Society of Anaesthesiologist
BP	Blood Pressure
Cl	Clearance
CNS	Central Nervous System
СРК	Creatine Phosphokinase
CYP450	Cytochrome P450
D2	Dopamine
EA	Emergence Agitation
ECG	Electrocardiography
ED	Emergency Department
FDA	Food and Drug Administration
GABA	Gamma-Aminobutyric Acid
HR	Heart Rate
ID	Intellectual Disability
ICU	Intensive Care Unit
IM	Intramuscular
IV	Intravenous
LMA	Laryngeal Mask Airway
MAC	Minimum Alveolar Concentration
MAP	Mean Arterial Blood Pressure
MRI	Magnetic Resonance Imaging
NMDA	N-methyl-D-aspartate
NMS	Neuroleptic Malignant Syndrome

Introduction

Emergence agitation (EA) in children early after sevoflurane anaesthesia is a common postoperative problem, with incidence ranging up to 80%, It is characterized by behavior that can include crying, disorientation, excitation and delirium, Several drugs have been tried in this regard including but not limited to propofol, midazolam, ketamine and ketorolac among other drugs (Abushahwan and chowdary, 2007).

Symptoms of (EA) are worse for pediatric patients, they cry heavily and writhe to free themselves, pull on their IV line, and impose a heavy burden on the medical staff, they play a very big role in making their parents lose confidence and satisfaction in the anaesthesia and surgery, so effective treatment requires understanding and addressing the multifactorial cause of the agitation, including pain, psychiatric symptoms, physical distress, and environmental triggers (Voepel-Lewis, Malviya and Tait, 2003).

Sevoflurane in particular has been associated with an increased amount of agitation on emergence from anaesthesia in children when compared with a more soluble anesthetic (halothane) even

in the absence of any surgical intervention (Abu-shahwan and *Chowdary*, 2007).

Sevoflurane is used frequently in pediatric patients, when inhalational induction of anaesthesia is required, because of its fast and non-irritating effects on the airway. The speed of emergence from sevoflurane anaesthesia, however, sometimes presents a dilemma to both patient and anesthetist. Thesis show a higher incidence of post anesthetic agitation has been attributed to the use of this newer inhalational anesthetic. However, the exact etiology of restlessness after sevoflurane anaesthesia is still not known (Aono et al., 1997).

Ketamine is a noncompetitive N-methyl-D-aspartate receptor antagonist. It manifests the effects of anesthesia analgesia in a dose-dependent relationship (Mason, 2017).

Ketamine is believed to reduce the incidence emergence agitation in children undergoing surgery procedure.

Nalbuphine is a semi-synthetic, agonist antagonist opioid analgesic agent. Nalbuphine acts as a partial agonist at kappa receptors and an antagonist at μ receptors, has minimal side

effects, and exhibits a ceiling effect for respiratory depression (Gal, DiFazio and Moscicki, 1982).

Nalbuphine should effectively relieve postoperative pain and decrease the rate of EA in pediatric patients after sevoflurane anesthesia.

AIM OF THE WORK

The objective of this study is to compare the effect of low dose nalbuphine to ketamine in the prevention of emergence agitation in children undergoing tonsillectomy with or without adenoidectomy.