

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Correlation of Stool Lactobacillus Acidophilus and Leaky Gut Syndrome in Patients with Hashimoto Thyroditis

Thesis

Submitted for the Partial Fulfillment of Master Degree in Internal Medicine

By

Omneya Refaat Abdel Rahman EL Dossoki M.B,B.Ch., Faculty of Medicine, Ain Shams University

Supervised By

Prof. Mohamed Reda Halawa

Professor of Endocrinology and Diabetes Faculty of Medicine - Ain Shams University

Dr. Laila Mahmoud Ali Hendawy

Assistant Professor of Endocrinology and Diabetes Faculty of Medicine - Ain Shams University

Dr. Mina Michael Nesim

Lecturer of Endocrinology and Diabetes
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mohamed Reda Halawa**, Professor of Endocrinology and Diabetes - Faculty of Medicine - Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Laila Mahmoud Ali Hendawy**, Assistant Professor of Endocrinology and Diabetes - Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mina Michael Nesim,** Lecturer of endocrinology and diabetes - Faculty of Medicine -Ain Shams University, for his great help, active participation and quidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Omneya Refaat Abdel Rahman EL dossoki

List of Contents

Title	Page No.
List of Tables	i
List of Abbreviations	iii
Introduction	1
Aim of the Work	
Review of Literature	
Hashimoto's Disease	5
The Leaky Gut	16
Gut Microbiota	28
Leaky Gut Syndrome and Hashimoto Thyroiditis	36
Patients and Methods	45
Results	53
Discussion	
Summary	76
Conclusion	79
Recommendation	
References	81
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Demographic and lab characteristics Hashimoto thyroiditis group and control	
Table (2):	Comparison between Hashimoto group (no. = 30) and control group (regarding demographic data.	no. = 30)
Table (3):	Comparison between Hashimoto to group (no. = 30) and control group (regarding FT3, FT4 and TSH	no. = 30)
Table (4):	Comparison between Hashimoto group (no. = 30) and control group (regarding Anti tpo and Zonulin	no. = 30)
Table (5):	Comparison between Hashimoto group (no. = 30) and control group (regarding Lactobacillus PCR.	no. = 30)
Table (6):	Comparison between patients newly cand on treatment regarding demographical and lab characteristics.	phic data
Table (7):	Comparison between positive and Lactobacillus PCR in Hashimoto regarding demographic data a characteristics.	patients nd lab
Table (8):	Correlation between Zonulin and den data and lab characteristics.	

List of Figures

Fig. No.	Title Page N	Vo.
Figure (1):	Illustration of host intestinal barriers	17
Figure (2):	Comparison between control group and patient group regarding Gender.	56
Figure (3):	Comparison between control group and patient group regarding age.	56
Figure (4):	Comparison between control group and patient group regarding body mass index.	57
Figure (5):	Comparison between control group and patient group regarding FT3 and FT4.	59
Figure (6):	Comparison between Control group and Patient group regarding TSH.	59
Figure (7):	Comparison between control group and Hashimoto thyroiditis group regarding anti Tpo	60
Figure (8):	Comparison between control group and patient group regarding zonulin level.	61
Figure (9):	Comparison between control group and patient group regarding Lactobacillus polymerase chain reaction)	62
Figure (10):	Relation between Lactobacillus PCR and TSH	65
Figure (11):	Relation between Lactobacillus PCR and Anti TPO.	65
Figure (12):	Relation between Lactobacillus PCR and Zonulin.	66
Figure (13):	Correlation between Zonulin and TSH	68
Figure (14):	Correlation between Zonulin and anti-TPO	68
List of Abbreviations		
Abb.	Full term	

AIRE	Autoimmune regulator
AITDs	Autoimmune thyroid diseases
AMPs	Antimicrobial proteins
ANA	Antinuclear antibodies
anti-Tg	Anti thyroglobulin
anti-TPO	Anti-thyroid peroxidase
APCs	Antigen-presenting cells
APS 1	Autoimmune polyglandular syndrome type l
ATD	Autoimmune thyroid disease
CTLA-4	Cytotoxic T lymphocyte-associated 4
DCs	Dendritic cells
ELISA	Enzyme-linked immunosorbent assay
FOXP3	Forkhead box protein 3
FT4	Free thyroxine
GABA	γ-amino butyric acid
GAPs	Cell-associated antigen passages
<i>GF</i>	Germ-free
HLA	Human leukocyte antigen
HS	Highly significant
HSP	Heat shock proteins
HT	Hashimoto thyroiditis
IAP	Intestinal alkaline phosphatase
IBD	Inflammatory bowel disease
IBM SPSS	Statistical Package for Social Science
<i>IECs</i>	Intestinal epithelial cells
IFN-a	Interferon-a
<i>IL-10</i>	Interleukin-10
IPEX	Immune dysregulation, polyendocrinopathy, Enteropathy, X-linked

List of Abbreviations (Cont...)

Abb.	Full term	
ITregs	Inducible Tregs	_
LPSs	Lipopolysaccharides	

MS	Multiple sclerosis
MUC2	Mucin
NLRs	NOD-like receptors
NS	Non significant
NSAIDs	Non-steroidal anti-inflammatory drugs
nTregs	Natural Tregs
PCR	Polymerase chain reaction
PRRs	Pattern recognition receptors
PTM	Pretibial myxoedema
PTMP	Posttranslational modification of proteins
PTPN22	Protein tyrosine phosphatase, non-receptor type 22
<i>RA</i>	Rheumatoid arthritis
<i>S</i>	Significant
SIgA	Secretory IgA
SLE	Systemic lupus erythematosus
T1D	Type 1 diabetes
TBII	TSH receptor-blocking antibodies
TEDs	Transepithelial dendrites
<i>TG</i>	Thyroglobulin
TgAb	Tg antibodies
TGF-β	Transforming growth factor beta
TLR	Toll-like receptor
TLRs	Toll-like receptors
	Thyroid peroxidase
TPOAb	Thyroperoxidase antibodies
TRAb	TSHR antibody
_	Tissue trans glutamimnase
ZO-1	Zonula occludens-1

INTRODUCTION

eaky gut, also known as increased intestinal permeability, is a digestive condition in which bacteria and toxins are able to "leak" through the intestinal wall. The walls of the intestines act as barriers, controlling what enters the bloodstream to be transported to our organs. Small gaps in the intestinal wall called tight junctions allow water and nutrients to pass through, while blocking the passage of harmful substances. Intestinal permeability refers to how easily substances pass through the intestinal wall *(Camilleri, 2019)*.

When the tight junctions of intestinal walls become loose, the gut becomes more permeable, which may allow bacteria and toxins to pass from the gut into the bloodstream. When the gut is "leaky" and bacteria and toxins enter the bloodstream, it can cause widespread inflammation and possibly trigger a reaction from the immune system (Mu et al., 2017).

A protein called zonulin is a known regulator of intestinal permeability. When it's activated in genetically susceptible people, it can lead to leaky gut. Two factors that trigger the release of zonulin are bacteria in the intestines and gluten, which is a protein found in wheat and other grains (Fasano, 2012). However, There are

likely multiple contributing factors to leaky gut syndrome as Excessive sugar intake, Non-steroidal antiinflammatory drugs (NSAIDs) Excessive alcohol intake, Nutrient deficiencies, Inflammation, Stress, Poor gut health: Yeast overgrowth (Konturek et al., 2011).

Hashimoto thyroiditis is an autoimmune disease that destroys thyroid cells by cell and antibody-mediated immune processes. It is the most common cause of hypothyroidism in developed countries. In contrast, worldwide, the most common cause of hypothyroidism is an inadequate dietary intake of iodine. This disease is also known as chronic autoimmune thyroiditis and chronic lymphocytic thyroiditis. The pathology of the disease involves the formation of antithyroid antibodies that attack thyroid tissue, causing progressive fibrosis (*Mincer and Jialal, 2019*).

Gut shows diverse microbial communities in different parts. Streptococcaceae and Lactobacillaceae populate the proximal region, whereas the distal portion of the small intestine is home to Lactobacillaceae, Erysipelotrichaceae, and Enterobacteriaceae. The colon is inhabited by members of Bacteriodaceae, Prevotellaceae, and Clostridiaceae families. The epithelial lining of stomach harbors Lactobacillaceae and Streptococcaceae. The term dysbiosis is commonly used to describe the situation that arises whenever there is a structural or

functional change in gut micro biota configuration, which disturbs homeostasis of the gut ((Kennedy et al., 2020).

Lactobacillus is a genus of Gram-positive, aero tolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. They are a major part of the lactic acid bacteria group (i.e., they convert sugars to lactic acid). In humans, they constitute a significant component of the microbiota at a number of body sites, such as the digestive system (Makarova et al., 2006).

Protection of the gut barrier from disruption by induction of changes in expression and distribution of tight junction proteins and mucus may be the key mechanism of probiotic function (*Ewaschuk et al., 2008*).

Alterations in the gut micro biota are associated with autoimmune diseases development. The molecular mimicry, bystander T-cell activation, post-translational modification of luminal proteins by altered micro biota, and a shift to proinflammatory milieu in gut mucosa could contribute to autoimmunity as in hashimoto thyroditis (*Straub*, 2015).

Introduction