

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Relationship between Serum Calprotectin and Peripheral Neuropathy in a Sample of Egyptian type 2 Diabetic Patients

Thesis

Submitted for Partial Fulfillment of M.Sc Degree in Endocrinology & Metabolism

> By Jamus Ada

Marwa Adel Afify

M.B.B.Ch – Faculty of Medicine- Misr University for Science and Technology

Under Supervision of

Prof. Dr. Salwa Seddik Hosny El Khawaga

Professor of Internal Medicine, Endocrinology& Metabolism Faculty of medicine – Ain Shams University

Dr. Ahmed Mohamed Bahaa El Din

Assistant Professor of Internal Medicine, Endocrinology& Metabolism Faculty of medicine – Ain Shams University

Dr. Nahla Nader Adly

Lecturer of Internal Medicine, Endocrinology & Metabolism Faculty of medicine – Ain Shams University

Dr. Mohamed Ali Awadein

Lecturer of Internal Medicine Faculty of medicine – Misr University for Science and Technology

> Ain Shams University Faculty of Medicine 2021

Acknowledgment

First of all, thanks GOD, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Salwa Seddik Hosny El Khawaga**, Professor of Internal Medicine, Endocrinology& Metabolism, Faculty of Medicine, *Ain Shams* University for her valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts she devoted in the supervision of this study.

I'll never forget, how co-operative was **Dr. Ahmed Mohamed Bahaa El Din**, Assistant Professor of Internal Medicine, Endocrinology& Metabolism, Faculty of Medicine, *Ain Shams* University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to **Dr. Nahla Nader Adly**, Lecturer of Internal Medicine, Endocrinology & Metabolism, and Faculty of Medicine – *Ain Shams* University. Her valuable advises and continuous support facilitated completing this work.

I would like also, to express my great thanks to **Dr. Mohamed Ali Awadein**, Lecturer of Internal Medicine, Misr University for Science and Technology, and Faculty of Medicine. His valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of the Internal Medicine department.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetic Peripheral Neuropathy	4
Serum Calprotectin	39
Subjects and Methods	62
Results	77
Discussion	107
Summary	118
Conclusion	125
Recommendations	126
References	127
Arabic Summary	 -

List of Tables

Table No.	Title	Page No.
Table (1):	Types of Diabetes	6
Table (2):	Potential pathogenesis of neuropathy	
Table (3):	Essential characteristics of Calpr	otectin 40
Table (4):	Various synonyms of calproted description for naming the protein	
Table (5):	Showing calprotectin activit associated functions	~
Table (6):	Pathological conditions associat calprotectin.	
Table (7):	Comparison between Control gr patients group regarding Gend HTN, and BMI.	oup and er, Age,
Table (8):	Comparison between Control gr patients group regarding (hs calprotectin, SBP, DBP, FPG,etc)	CRP, s. HbA1c,
Table (9):	Comparison between control (g and patients (group II&III) re LDL, HDL, TGs and cholesterol:	egarding
Table (10):	Descriptive data regarding Gifundus examination results in group	patients
Table (11):	Comparison between control diabetic without peripheral neu and diabetic with peripheral neu regarding gender, age, HTN, BM	group, ropathy, iropathy
Table (12):	Comparison between Control gr patient groups regarding LDL, H and cholesterol:	$_{ m IDL,TGs}$

List of Tables

Table No.	Title	Page No.
Table (13):	Comparison between diabetic w peripheral neuropathy and diabeti peripheral neuropathy regarding and fundus.	c with GFR
Table (14):	Correlation between HS CRP (S.calprotectin, age, BMI, SBP, HBA1C, FPG, 2hrPP, andetc) patients, Diabetic without peripheral neuropathy:	DBP, In all pheral with
Table (15):	Relation between HS CRP and g HTN and fundus in Diabetic w peripheral neuropathy	ithout
Table (16):	Relation between HS CRP and g HTN and fundus in diabetic peripheral neuropathy	with
Table (17):	Correlation between S.calprotectin (HS CRP, age, BMI, SBP,etc) patients(Diabetic without perineuropathy, and Diabetic with perineuropathy).	In all pheral pheral
Table (18):	Relation between S.calprotectin gender, HTN and fundus in di without peripheral neuropathy	and abetic
Table (19):	Relation between S.calprotecting gender, HTN and fundus in Diwith peripheral neuropathy	abetic

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Glucose metabolism and changes in diabetes	13
Figure (2):	Small fiber neuropathy symptom clusters and neuropathy classification	14
Figure (3):	Vascular supply of peripheral nerve	
Figure (4):	Healthy and damaged nerves	
Figure (5):	Overview of various pathogenetic	
Figure (C).	components contributing to DPN	
Figure (6):	Pathogenesis of diabetic neuropathy	10
Figure (7):	glycemia in cells	20
Figure (8):	Types of diabetes neuropathy	
Figure (9):	Motor conduction velocity of median nerve	
Figure (10):	CCM of sub-basal nerve plexus from a control subject (A) and patients with mild (B), moderate (C), and sever (D) diabetic neuropathy	
Figure (11):	Major Biological processes in which calprotectin is involved	
Figure (12):	Inducers of calprotectin secretion	
Figure (13):	Shows mean of HbA1c between studied	10
	groups	85
Figure (14):	Shows mean of HS CRP between studied groups	
Figure (15):	Shows mean of S.calprotectin between studied groups.	
Figure (16):	Shows fundus between studied patient groups.	
Figure (17):		

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18)	Shows mean of hs CRP between s	studied
rigure (10).	groups	
Figure (19):	Shows mean of s.calprotectin b	
	studied groups	93
Figure (20):	Shows mean of microalbumiuria b	etween
	studied groups	94
Figure (21):	ROC curve between control and p	atients
	group	103
Figure (22):	ROC curve between control and D	Diabetic
	without peripheral neuropathy	104
Figure (23):		
	with peripheral neuropathy	105
Figure (24):		
	peripheral neuropathy and diabeti	
	peripheral neuropathy	106

List of Abbreviations

Abb.	Full term
ADA	. American Diabetes Association
AGEs	Advanced glycation end products
	. Complement component 5a
	. Corneal Confocal Microscopy
	. Chronic inflammatory demyelinating polyneuropathy
CVD	. Cardiovascular disease
DM	. Diabetes mellitus (
DN	Diabetic neuropathy
<i>DPN</i>	Diabetic peripheral neuropathy
<i>DPNP</i>	. Diabetic peripheral neuropathic pain
	. Distal symmetric polyneuropathy
DSPN	. Diabetic sensori-motor polyneuropathy
<i>EDTA</i>	. Ethylene- diamino tetra acetic acid
eNOS	. Endothelial nitric oxide synthase
Fmlp	. N-formylmethionyl- leucylphenylalanine
<i>FPG</i>	Fasting plasma glucose
GAD65	. Glutamic acid decarboxylase
<i>GSH</i>	. Glutathione
<i>GSSG</i>	. Oxidized glutathione
HDL	. High density lipoprotein
hsCRP	. High sensitive c-reactive protein
IA-2	Islet antigen-2
IENFD	. Intraepidermal nerve fiber density
<i>IL-1</i> β	. Interleukin-1β
<i>IR</i>	Insulin resistance

List of Abbreviations Cont...

Abb.	Full term
<i>LDL</i>	Low density lipoprotein
<i>LPS</i>	Lipopolysaccharide
<i>MMPs</i>	Matrix metalloproteinases
<i>NAD</i>	Nicotinamide adenine dinucleotide
<i>NAD</i>	.Nicotinamide adenine dinucleotide
<i>NADH</i>	.Nicotinamide adenine dinucleotide hydrogen
<i>NADP</i>	.Nicotinamide adenine dinucleotide phosphate
<i>NADPH</i>	$. Ni cotina mide\ adenine\ dinucleo tide\ phosphate$
NCS	Nerve conduction studies
<i>NO</i>	Nitric oxide
<i>OGTT</i>	.Oral glucose tolerance test
<i>PKC</i>	.Protein kinase C
ROS	Reactive oxygen species
SFN	Small fiber neuropathy
<i>T2DM</i>	Type 2 diabetes
TCA	.Trichloroacetic acid
TLR4	.Toll like receptors 4
<i>TNF</i> α	Tumor necrosis factor- $lpha$
<i>US</i>	Ultrasound
<i>WHO</i>	World Health Organization
ZnT8	.Zinc transporter 8

ABSTRACT

Background; Plasma calprotectin is a persistent biomarker of insulin resistance (IR), gastroenteritis, and cardiovascular disease (CVD). Elevated plasma levels of calprotectin have been reported in a variety of chronic inflammatory conditions. Elevated calprotectin levels have been reported to predict microvascular alterations in type 2 diabetes (T2DM) patients, Aim and objectives; to evaluate if there is a relationship between serum calprotectin and perioheral neuropathy in a sample of Egyptian type 2 Diabetic patients, Subjects and methods: This study is a case-control study that was conducted on 60 subjects their age ranging from 45- 60 years old, recruited from Endocrinology & metabolism outpatient clinic at Ain Shams University hospitals, divided into 3 groups, during the period from May to October 2020, Result; there was highly statistically significant difference found between two groups regarding HS CRP, S calprotectin, AlT, AST, Urea and creat, HbA1c, FbG,2hrpp with (p-value 0.000), Conclusion; high levels of calprotectin detected in type 2 diabetic patients with peripheral neuropathy suggest that this molecule may have a role in pathogenesis of neuroinflammation among these patients. Serum calprotectin levels in the future may be used as potential markers of its presence, severity and progression of the diabetic peripheral neuropathy. Therapeutic strategies for S100A9 and its activity are recently under development in inflammatory diseases. Therefore, Diabetic neuropathy is associated with increased serum level of calprotectin, Keywords; Calprotectin, Diabetes mellitus, Neuroinflammation, Peripheral neuropathy.

Introduction

Diabetes is a growing global health problem. According to data published by the International Diabetes Federation, there are 425 million diabetic patients (aged 20–79 years) worldwide; by 2045, this number is expected to rise to 693 million (Cho et al., 2018).

The commonly encountered microvascular complication of type 2 diabetes is Diabetic peripheral neuropathy (DPN) affects over 50% of diabetic patients and has emerged as a severe public health problem (Iqbal et al., 2018). This chronic complication causes immense financial burden and seriously decreases the life quality and expectancy of diabetic patients (Hicks and Selvin 2019).

DPN is induced by multifactorial metabolic disorders, including abnormal metabolism of glucose, lipid, and protein abnormalities, neurotrophic leading to vascular insufficiency, oxidative stress and immune damage (Dewanjee et al., 2018).

The duration of diabetes and glycemic control is the most significant risk factors for DPN. Other risk factors for cardiovascular disease are also associated with DPN, including: obesity, hypertension, smoking, and dyslipidemia (Callaghan et al., 2018) approximately 50% of people with DPN suffer from peripheral neuropathic pain (Alleman et al., 2015). Many