

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ROLE OF CIRCULATING VASCULAR CELL ADHESION PROTEIN — 1 AS A BIOMARKER IN NON-ALCOHOLIC FATTY LIVER DISEASE

Thesis

Submitted for partial fulfillment of Master's Degree in Gastroenterology and Hepatology

Presented by

Yasser Mohamed Ali Abdelhady Alsaid

M.B.B.CH, Faculty of Medicine- October 6 University

Supervised by

Prof. Dr. Mohamed Abd EL Moghny Mostafa

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Ali El Ray

Professor of Gastroenterology and Hepatology Faculty of Medicine, October 6 University

Dr. Ahmed Samir Abd El Sadek

Asst. Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Khaled Abdl EL Hamid Rafat

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Mohamed Abd EL Moghny Mostafa**, Professor of Internal Medicine and Gastroenterology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Ahmed Ali El Ray,** Professor of Gastroenterology and Hepatology, October 6 University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Ahmed Samir Abd El Sadek**, Asst. Professor of Internal Medicine and Gastroenterology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude Dr. Khaled Abdl EL Hamid Rafat, Lecturer of Internal Medicine and Gastroenterology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Ti	tle		Page
•	List of Abbre	eviations	I
•	List of Table		
•	List of Figures		
•	Introduction		
•	Aim of the work		
•	Review of literature		
	Chapter (1):	Nonalcoholic Fatty Liver Disease	6
	Chapter (2):	Circulating vascular cell adhesion protein – 1	46
•	Patients and	Methods	59
•	Results		67
•	Discussion79		
•	Conclusion90		
•	Recommendations		91
•	Summary	••••••	92
•	References.	••••••	95
•	. الملخص العربي		

LIST OF ABBREVIATIONS

Abb.	Full term	
ALD Alcohol-related liver disease		
AMA	Anti-mitochondrial antibodies	
ANA	Anti-nuclear-antibodies	
AOC3	Amine oxidase copper– containing 3	
ASBT	Apical sodium-dependent bile acid transporter	
CA	Cholic acid	
CDCA	Chenodeoxycholic acid	
CHC	Chronic hepatitis C	
CVD	Cardiovascular diseases	
ELF	Enhanced liver fibrosis	
FIB-4	Fibrosis-4	
FLI	Fatty liver index	
FXR	Farnesoid X receptor	
HCC	Hepatocellular carcinoma	
HE	Hepatic encephalopathy	
HSCs	Hepatic stellate cells	
IGF	Insulin growth factor	
IL-1β	Interleukin-1β	
IL-4	Interleukin-4	
IR	Insulin resistance	
LT	Liver transplantation	
MAFLD	Metabolic associated fatty liver disease	
MCD	Methionine-choline-deficient	
MD	Mediterranean Diet	
MetSyn	Metabolic syndrome	
MRE	Magnetic resonance elastography	
NAFL	Nonalcoholic fatty liver	
NAFLD	Nonalcoholic fatty liver disease	
NASH	Non-alcoholic steatohepatitis	
NFS NAFLD fibrosis score		
NICE	National Institute for Health and Care Excellence	
NPV	Negative predictive value	
PDFF	Proton density fat fraction	

ı

€ List of Abbreviations

Abb.	Full term	
PPV	Positive predictive value	
SCFAs	Short-chain fatty acids	
SECs	Sinusoidal endothelial cells	
SIBO	Small intestinal bacterial overgrowth	
SMA Smooth muscle antibodies		
T2D	Type 2 diabetes	
TE	Transient Elastography	
THV Terminal hepatic venule		
TNF-α	F- α Tumor necrosis factor α	
VAP-1	Vascular adhesion protein-1	
VCAM-1	Circulating vascular cell adhesion protein – 1	
VCTE	Vibration-controlled transient elastography	
VCTE	Vibration-controlled transient elastography	
VLDL	VLDL Very-low-density lipoprotein	
WHO	World Health Organization	
WLM	Western lifestyle model	

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Clinical characteristics of the studied patients	67
Table (2):	Comparison between the two studied groups	
	according to demographic criteria	68
Table (3):	Comparison between the two studied groups	
	according to biochemical parameters	69
Table (4):	Laboratory investigations of the studied	
	patients	70
Table (5):	Comparison between the different studied	
	groups according to VCAM-1	71
Table (6):	Sensitivity, specificity and cutoff value of	
	VCAM-1 to detect NAFLD group	72
Table (7):	Sensitivity, specificity and cutoff value of	
	VCAM-1 to detect NASH group.	73
Table (8):	Comparison between the two studied groups	
	according to FIB-4 score	73
Table (9):	Comparison between the two studied groups	
	according to APRI score	74
Table (10)	:U/S results in the three studied groups	74
Table (11)	:Correlation between VCAM-1and different	
	parameters in the NASH group	7 5
Table (12)	:Correlation between VCAM-1 and different	
	parameters in NAFLD group	77
Table (13)	:Binary logistic regression analysis for relevant	
	predictors of the outcome of patients with	
	NASH and NAFLD	78

LIST OF FIGURES

Figure No	Subjects	Page				
Figure (1): The natural history of NAFLD						
Figure (2): Represen	tation of the metabolic	syndrome,				
having	visceral obesity as	the core				
compone	nts, and its relationship wi	th NAFLD11				
Figure (3): VCAM-1	splice variants	46				
Figure (4): Receiver operating characteristic curve (ROC)						
was cons	tructed to assess accuracy	of VCAM-				
1 level to	detect NAFLD group	71				
Figure (5): Receiver	operating characteristic co	ırve (ROC)				
was cons	tructed to assess accuracy	of VCAM-				
1 level to	detect NASH group	72				
Figure (6): Correlation	on between VCAM-1an	d different				
paramete	rs in the NASH group	76				

INTRODUCTION

As a result of the obesity pandemic, non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease worldwide. NAFLD is the hepatic manifestation of obesity and a precursor of and independent risk factor for type 2 diabetes (*Yki-Jarvinen*. 2014), (*Lonardo et al.*, 2015).

NAFLD comprises a spectrum of disease that ranges from hepatocellular steatosis without necro-inflammation (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and even hepatocellular carcinoma. In addition, NAFLD is an independent risk factor for cardiovascular disease, with recent studies unequivocally showing an increased cardiovascular mortality in NAFLD patients (*Ekstedt et al.*, 2015), (*Angulo et al.*, 2015).

The global prevalence of NAFLD and NASH is around 25% and 3%, respectively, although this rises to an estimated 90% and 25%, respectively, in severely obese patients (*Younossi et al.*, 2016), (*Vernon G et al.*, 2011). Liver biopsy is still considered as the gold standard for the diagnosis of NASH and the assessment of disease activity and fibrosis, although it has important disadvantages such as its high cost, invasive nature and the risk of sampling error (*EASL guidelines 2016*).

This has inspired the search for non-invasive disease markers, including both serum biomarkers and imaging methods. Nevertheless, there are currently no non-invasive markers that can adequately distinguish NAFLD from NASH (*Machado et al.*, 2013).

Similarly, while many markers have shown an acceptable accuracy for the exclusion of advanced fibrosis/cirrhosis (F3-F4) (*McPherson et al.*, 2013), the identification of advanced disease is less accurate, and the distinction between significant (\geqslant F2) or any (\geqslant F1) fibrosis versus no fibrosis remains difficult (*Guha et al.*, 2008).

The latter represents an unmet need, as recent guidelines recommend a closer follow-up of patients with significant fibrosis (*EASL guidelines 2016*), and the long-term prognosis of patients with fibrosis, even F1, is worse compared to NAFLD patients without fibrosis (*Angulo et al., 2015*).

Neoangiogenesis is increased in NASH patients and correlates with the severity of fibrosis (*Kitade et al., 2009*).

Endothelial dysfunction and pathological angiogenesis in turn predispose the liver to further injury as they increased intrahepatic vascular resistance, distorted the sinusoidal microvascular architecture, modulated leukocyte infiltration and caused local tissue hypoxia (*Coulon S et al.*, 2013), (*Francque et al.*, 2012) ,(*Lefere et al.*, 2016).

Indeed, both processes seem to be early events that precede the development of inflammation and fibrosis (*Pasarin et al.*, 2011) and further substantiate the links between NAFLD and cardiovascular disease (*Francque et al.*, 2016).

Vascular cell adhesion molecule-1 or CD106 is a 110 kDa transmembrane glycoprotein member of the immunoglobulin gene superfamily (*Osborn et al.*, *1989*).

It was first described as a cytokine-inducible endothelial adhesion molecule. It can bind to leukocyte integrin very late antigen-4 (VLA-4) to recruit leucocytes to sites of inflammation. Thus, VCAM-1 stimulates adhesion of lymphocyte and monocytes to the surface of the vascular endothelium. In addition, eosinophils and basophils, but not neutrophils, can bind to endothelial cells via VCAM-1/VLA-4 interaction.

This adhesion molecule is expressed primarily on endothelial cells; however, other cell types, both vascular and nonvascular cells, are also capable of expressing VCAM-1. New insights and diagnostic improvements in NAFLD such as transient elastography and FibroScan are trending.

However, focusing on noninvasive, cheap, and useful biomarkers in clinical practice is mandatory. In this way, the role of circulating biomarkers related to endothelial dysfunction and the severity of underlying liver disease

✓ Introduction

need to be investigated. It is suggested that there is a role of VCAM-1 stimulating adhesion of lymphocyte and monocytes to the surface of the vascular endothelium. VCAM-1 is not investigated thoroughly in different stages of liver diseases, such as NAFLD (*Lefere et al.*, 2017).