

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Prognostic implication of PD-L1 expression and associated tumor infiltrating lymphocytes in metastatic breast cancer

Thesis

Submitted for Partial Fulfilment of Medical Doctorate Degree in Clinical Oncology & Nuclear Medicine

By

Mohammad Mostafa Mostafa Kamal Darwish Medical doctorate

Under supervision of

Prof. Atef Youssef Riad

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Dina Ahmad Mohamed Salem

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Ahmad Ezzat Essa

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

Prof. Marwa Mosaad Mohamed Shakweer

Assistant Professor of Pathology Faculty of Medicine – Ain Shams University

Dr. Diaa El Din Mousa Sherif

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Attef Youssef Riad**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dina Ahmad Mohamed Salem**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Ahmad Ezzat Essa, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof.** Marwa Mosaad Mohamed Shakweer, Assistant Professor of Pathology, Faculty of Medicine – Ain Shams University, for her kindness, supervision and cooperation in this work.

I am sincerely indebted to **Dr. Dina El Din Mousa Sherif**, Lecturer of Clinical Oncology and Nuclear
Medicine, Faculty of Medicine – Ain Shams University, for
his guidance and sincere help from beginning of the
current work.

Mohammad Darwish

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	5
Review of Literature	
Epidemiology	6
Pathology	18
Risk Factors	36
Prognostic Factors	48
Immunotherapy	71
Patients and Methods	98
Results	103
Discussion	121
Summary and Conclusion	128
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
APC	Antigen-presenting cells
	American Society of Clinical Oncology
	Age-standardized incidence rate
	Bacillus Calmette-Guerin
	Breast cancer-specific survival
	Cluster of differentiation
CDH1	Cadherin 1 gene
	Circulating tumor cells
ctDNA	Circulating tumor DNA
CTLA-4	Cytotoxic T-lymphocyte-associated protein 4
DCIS	Ductal carcinoma in situ
DFS	Disease-free survival
EGFR	Epidermal growth factor receptor
EPCAM	Epithelial cell adhesion molecule gene
ER	Estrogen receptor
FDA	Food and Drug Administration
HDGC	Hereditary diffuse gastric cancer
HER2	Human epidermal growth factor receptor 2
HR	Hazard ratio
IDC	Invasive ductal carcinoma
IFNgamma	Interferon gamma
IHC	Immunohistochemical
IL	Interleukin
ILC	Invasive lobular carcinoma
IM	Immunomodulatory
ITC	Isolated tumor cells
KIR	Killer immunoglobulin-like receptor
KPS	Karnofsky performance status
LCIS	Lobular carcinoma in situ

List of Abbreviations Cont...

Abb.	Full term
LES	.Li-Fraumeni syndrome
	. Metastatic breast cancer
	. Major histocompatibility complex
	. Menopausal hormonal therapy
	. Microarray in Node-Negative Disease May Avoid Chemotherapy
MMR	. Mutations in mismatch repair
NACT	. Neoadjuvant chemotherapy
NK	. Natural killer
NMSC	.Non-melanoma skin cancer
NOS	. Not otherwise specified
NSCLC	. Non-small cell lung cancer
OS	.Overall survival
PAM50	. Predictor Analysis of Microarray 50
PD-1	.Programmed cell death protein 1
PD-L1	.Programmed death-ligand 1
PFS	.Progression-free survival
PHTS	.Phosphatase and hamartoma tumor syndrome
PLVI	.Peritumoral lymphovascular invasion
PR	. Progesterone receptor
PTEN	. Phosphatase and tensin homolog tumor suppressor gene
RCC	.Renal cell carcinoma
RR	. Relative risk
RS	.Recurrence Score
SEER	.Surveillance, Epidemiology, and End Results
SRR	.Summary RR
TCR	.T cell receptor
TDLU	.Terminal duct-lobular unit
Th1	.T helper 1

List of Abbreviations Cont...

Abb.	Full term
Th2	Thelper 2
	Tumor-infiltrating lymphocytes
TMAs	Tissue microarrays
TN	Triple negative
TNBC	Triple-negative breast cancer
TNM	Tumor, Node, Metastasis
WHO	World Health Organization
WTS	Whole tissue section

List of Tables

Table No.	Title	Page No.
Table (1):	Relative risk (RR) of breast and cancers associated with <i>BRCA1/2</i> mu according to ages	utations
Table (2):	Clinical characteristics of the patients	103
Table (3):	Descriptive data of TIL density, TILs, and PD-L1+ tumor cells	
Table (4):	Correlation between TIL density and cells (immune and tumor cells)	
Table (5):	Correlation between TIL density, TIL and PD-L1+ tumor vs intrinsic s and their statistical significance	ubtypes
Table (6):	Correlation between PD-L1+ TI histopathology and its statistical signi	
Table (7):	Correlation between TIL and OS	111
Table (8):	Correlation between TIL and OS group infiltration <50% vs. >50%	
Table (9):	Correlation between TIL and PFS	
Table (10):	Correlation between TIL and PFS at TIL infiltration <50% vs. >50%	-
Table (11):	Correlation between TIL and PFS in pwith ER+/Her2- tumors	•
Table (12):	Correlation between TIL and OS in pwith ER+/Her2- tumors	
Table (13):	Correlation between PD-L1+ TIL and	OS 117
Table (14):	Correlation between PD-L1+ TIL and	PFS 118
Table (15):	Correlation between PD-L1+ tumor ar	nd OS 119
Table (16):	Correlation between PD-L1+ tumor ar	nd PFS 120

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Number of new cases of cancer in types, both sexes	
Fig. (2):	Number of new cases of cancer in types, in females	•
Fig. (3):	Cumulative percent of breast cancer in SEER17, 2000-2005	
Fig. (4):	Age-specific breast cancer incidence ages, all races, SEER data 2000-2006.	•
Fig. (5):	Age-specific incidence rates for breast Egypt 2008–2011	12
Fig. (6):	Trends of the most common cancers i from 2002-2010 in NCI in Egypt, breast cancer the most common of females by far	showing cancer in
Fig. (7):	Age specific incidence rates of breast NCI, Egypt, 2002-2010	
Fig. (8):	Tumor grades	15
Fig. (9):	Tumor stage	16
Fig. (10):	Estimated number of cases in Egypt	16
Fig. (11):	Estimated number of cases in Egyp 2050) and causes of the increase in case	
Fig. (12):	Section of the nipple showing squamous epithelium and densely dermis	fibrotic
Fig. (13):	High power view of acini present in lobule	
Fig. (14):	A historical method of classifying carcinoma in situ (DCIS) is based predominant microscopic growth patrincludes comedo (A), cribriform (B), micropapillary (D), and papillary (E) s	on their ttern and solid (C),

List of Figures Cont...

Fig. No.	Title Page No.	
Fig. (15):	Invasive Ductal Carcinoma (IDC) A Grade I. B Grade II. C Invasive ductal NST carcinoma, grade III with no evidence of glandular differentiation	7
Fig. (16):	Low power view of an infiltrating lobular breast carcinoma shows small tumor cells that infiltrate the stroma singly and in a single file pattern	3
Fig. (17):	Low-power view of a tubular breast carcinoma shows that the tumor is composed of well-formed glands or tubules that invade the mammary stroma	1
Fig. (18):	Low power view of a mucinous breast carcinoma shows small nests of tumor cells dispersed in large pools of extracellular mucous 32	2
Fig. (19):	Low power view of a medullary breast carcinoma shows that the tumor has a well circumscribed border	
Fig. (20):	The three phases of cancer immunoediting 78	3
Fig. (21):	PD-1/ PD-L1 binding leads to peripheral CD8+ T cell "exhaustion" phenotype80)
Fig. (22):	CTLA-4 acting as physiologic "brake" on costimulation of CD8+ T cell	1
Fig. (23):	Immune activation and checkpoint inhibition 82	2
Fig. (24):	Kaplan Meier curve showing correlation between TIL and OS111	1
Fig. (25):	Kaplan Meier curve showing correlation between TIL and OS grouped TIL infiltration <50% vs. >50%	2
Fig. (26):		

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (27):	Kaplan Meier curve showing between TIL and PFS grouped TIL <50% vs. >50%	infiltration
Fig. (28):	Kaplan Meier curve showing between TIL and PFS in pati ER+/Her2- tumors	ents with
Fig. (29):	Kaplan Meier curve showing between TIL and OS in pati ER+/Her2- tumors	ents with
Fig. (30):	Kaplan Meier curve showing between PD-L1+ TIL and OS	
Fig. (31):	Kaplan Meier curve showing between PD-L1+ TIL and PFS	
Fig. (32):	Kaplan Meier curve showing between PD-L1+ tumor and OS	
Fig. (33):	Kaplan Meier curve showing between PD-L1+ tumor and PFS	

Introduction

V lobally, breast cancer is the most frequently diagnosed malignancy, accounting for over a million cases diagnosed each year (1.67 million cases diagnosed per year) (Ferlay et al., 2015). In the recent National Population-Based Cancer Registry Program in Egypt, the annual age specific incidence rates for female breast cancer in Egypt was 48.8/100,000 (Ibrahim et al., *014*).

Breast cancer is a highly heterogeneous disease, in terms of its etiology and pathological characteristics; some cases show slow growth with excellent prognosis, while others take a highly aggressive clinical course (Verma et al., 2012). Gene expression studies have identified several distinct breast cancer molecular subtypes that differ markedly in the prognosis and the therapeutic targets they express (Sotiriou et al., 2003).

Triple-negative breast cancer (TNBC) is a term that has been applied to breast cancers that are low in expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), representing about 10-20% of breast carcinomas (*Boyle*, 2012). TNBC usually tends to have a worse prognosis, relapse early and behave more aggressively, compared to other types of breast cancer. Unlike other subtypes (ER positive, HER2 positive), TNBC has yet no treatments available, other approved target than the administration of chemotherapy (Dawood, 2010).