

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of ADAM28 expression in adult Egyptian Acute Myeloid Leukemia patients and its impact on outcome

Thesis

Submitted in Partial Fulfillment of the Requirement of the Master Degree

Internal Medicine

Aliaa Nabil Abdou Hussein

MB.B.Ch, Faculty of Medicine, Ain Shams University

Supervisors

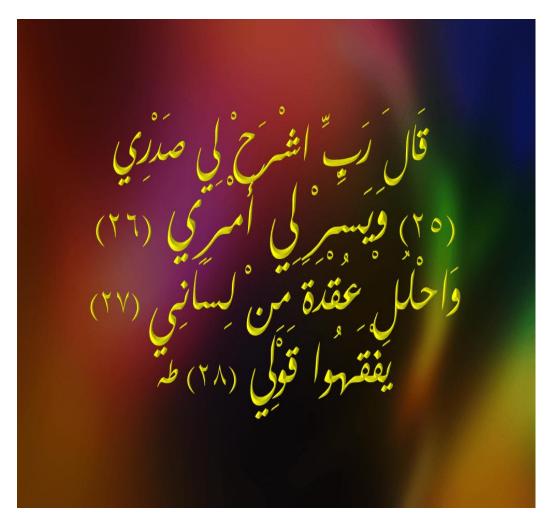
Prof. Mohamed Ossman Azzazi el Messeri

Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Prof. Shaza Abd El Wahab El kourashy

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Assist. Prof. Nermeen Adel Nabih


Assistant professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Heba Mohamed Saber Hafez

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

بسم الله الرحمن الرحيم

صدق الله العظيم سورة طم

Acknowledgments

First and foremost, my deep gratefulness and indebtedness is to Allah, "The Most Gracious and The Most Merciful".

I would like to express my sincere gratitude to Prof. Dr Mohamed Ossman Azzazi el Messeri, Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University who offered me advice during the present work. I will appreciate his continuous guidance, valuable directions, extensive revision, objective criticism, and he was helping me to overcome many difficulties during the study.

In addition, my deep appreciation and sincere thanks to Dr Shaza Abd El Wahab El kourashy, professor of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University for his valuable and expert supervision. She offered me advice during the present work. Her kind insight and encouragement helped me to bring out the best work.

Furthermore, I would like to express my sincere gratitude to Dr Nermeen Adel Nabih, Assistant professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University, for his continuous guidance, sincere help during the stages of this work, and for her continuous advice and encouragement during the preparation of the thesis.

Furthermore, I would like to express my sincere gratitude to Dr Heba Mohamed Saber Hafez, Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University, for his continuous guidance, sincere help during the stages of this work, and for her continuous advice and encouragement during the preparation of the thesis.

At last but not least all thankfulness, deep respects to Internal Medicine and Clinical Hematology department, Faculty of Medicine, **Ain Shams** University, where this study was done.

Aliaa Nabil Abdou Hussein

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the work	3
Review of Literature	4
Subjects and Method	61
Results	66
Discussion	81
Summary	87
	90
Recommendations	91
References	92
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Specific entities of leukemia according to WHO 2008	5
Table (2):	Selected Risk Factors Associated With Acute Leukemia	•
Table (3):	WHO classification of AML and related neoplasms	23
Table (4):	Prognostic-risk group based on cytogenetic and profile	
Table (5):	Descriptive data of the studied groups	66
Table (6):	Distribution of cases group according to FAB score	68
Table (7):	Distribution of cases group according to Cytoger category	
Table (8):	Comparison between studied groups as regard ADAM-	2870
Table (9):	Comparing ADAM-28 level between responders a responders to chemo therapy of cases	
Table (10):	Relation between Mortality and ADAM-28	74
Table (11):	Correlation between Age and finding in ADAM-28	76
Table (12):	Correlation between FAB classification and finding in AI	DAM-28 77
Table (13):	Correlation between MRD and finding in ADAM-28	79

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Phylogenetic tree of human ADAM family members	51
Figure (2):	Domain structures of ADAM28m and ADAM28s	51
Figure (3):	Activation of proADAM28 and inhibition of its actinhibitors	
Figure (4):	Distribution of cases group according to FAB score	68
Figure (5):	Distribution of cases group according to Cytogene category	
Figure (6):	Comparison between studied groups as regard ADAM-2	28m71
Figure (7):	Comparison between studied groups as ADAM-28s	71
Figure (8):	Relation between response to chemo therapy and ADAI	M-28m73
Figure (9):	Relation between response to chemo therapy and ADAI	M-28s73
Figure (10):	Relation between mortality and ADAM-28m	74
Figure (11):	Relation between mortality and ADAM-28s	75
Figure (12):	Correlation between FAB classification and ADAM-28	m77
Figure (13):	Correlation between FAB classification and ADAM-28	s78
Figure (14):	Correlation between MRD and ADAM-28m	79
Figure (15):	Correlation between MRD and ADAM-28s	80

List of Abbreviations

Abb.	Full term
ADAMDEC1	ADAM-like decysin 1
	A disintegrin and metalloproteinases
	ADAM and ADAM with thrombospondin motifs
	acute lymphoblastic leukemia
	Acute myeloid leukemia
	activator protein 1
	adolescent and young adult
	basic fibroblast growth factor
	chimeric antigen receptor-T
	core binding factors-acute myloid leukemia
	core binding facto b
	core binding factors
	Cumulative incidence
CLL	chronic lymphocytic leukemia
	chronic myeloid leukemia
CN-AML	Cytogenetically normal acute myeloid leukemia
	complete remission
	Deoxyribonucleic acid
ECM	extracellular matrix
<i>EGF</i>	epidermal growth factor
ELISA	Enzyme-linked immunosorbent assay
FLAG-IDA	fludarabine, cytarabine, G-CSF and idarubicin
FLT3	Fms-like tyrosine kinase 3
<i>FRβ</i>	folate receptor family
<i>GFP</i>	green fluorescent protein
GO	Gemtuzumab ozogamicin
HSCT	Hematopoietic stem cell transplant
<i>IGF-I</i>	insulin-like growth factor I
<i>IL</i>	Interleukin
<i>MAPK</i>	mitogen-activated protein kinase
<i>MDC</i>	metalloproteinase disintegrin cysteine-rich
MDS	myelodysplastic syndromes
<i>MMAE</i>	monomethyl auristatin E
<i>MMPs</i>	matrix metalloproteinases
<i>MMPs</i>	matrix metalloproteinases
<i>MTD</i>	maximum tolerated dose

List of Abbreviations (Cont...)

Full term Abb. NQO1NAD (P) H: quinone oxidoreductase 1 of relapse PCRPolymerase chain reaction PKC.....protein kinase C RAR.....retinoic acid receptor RECKreversion-inducing cysteine-rich protein with Kazal motifs RFS.....relapse-free survival RFS.....Relapse-free survival SEER.....Surveillance, Epidemiology, and End Result STAT3.....signal transducer and activator of transcription 3 SVMPs.....snake venom metalloproteinases TGF.....transforming growth factor TIMP-3.....tissue inhibitor of metalloproteinases-3 TK.....tyrosine kinase TKI.....tvrosine kinase inhibitors TNF- alpha.....tumor necrosis factor- alpha TRMtreatment-related mortality VEGF.....vascular endothelial growth factor WHO......World Health Organization

Introduction

Cute myeloid leukemia (AML) is the most common type of acute leukemia in adults and is fatal as a result of primary refractoriness, relapse, or treatment-related mortality (Wouters and Delwel, 2016). Although the majority of patients with AML enter remission upon induction chemotherapy, the risk of relapse is considerable (Bower et al., 2016). Transplantation regimens can be curative, but it remains challenging to identify high risk patients suitable for early transplantation (Cornelissen and Blaise, 2016).

A disintegrin and metalloproteinases (ADAMs) are a new gene family of proteins with sequence similarity to the reprolysin family of snake venomases that share the metalloproteinase domain with matrix metalloproteinases (MMPs). They are structurally classified into two groups: the membrane-anchored ADAM and ADAM with thrombospondin motifs (ADAMTS) (**Zhang et al., 2016**).

These molecules are involved in various biological events such as cell adhesion, cell fusion, cell migration, membrane protein shedding and proteolysis. Studies on the biochemical characteristics and biological functions of ADAMs are in progress, and accumulated lines of evidence have shown that some ADAMs are expressed in malignant tumors and participate in the pathology of cancers. The activities of ADAMs are regulated by gene expression, intracytoplasmic and pericellular regulation, activation of the zymogens and inhibition of activities by inhibitors (**Dong et al., 2015**).

Many ADAM species, including ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17, ADAM19, ADAM28, ADAMTS1,

Introduction

ADAMTS4 and ADAMTS5, are expressed in human malignant tumors. Many of them are involved in the regulation of growth factor activities and integrin functions, leading to promotion of cell growth and invasion, although the precise mechanisms of these are not clear at the present time (Reiss and Saftig, 2009).

ADAM28, a member of the ADAM family, cleaves various substrates including von Willebrand factor. Two isoforms of ADAM28: the membrane associated (ADAM28m) and the secreted (ADAM28s) were identified. Both were overexpressed in solid tumors including breast carcinoma, non-small cell lung cancer, and bladder transitional cell carcinoma (**Hubeau et al., 2020**).

ADAM28 has been shown to relate with tumor proliferation and prognosis However, little is known about expression and potential role of ADAM28 in hematological malignancies. Limited studies suggested that the expression of ADAM28 is up-regulated in acute myeloid leukemia (**Zhang et al., 2019**). However, the mechanism by which ADAM28 regulates the leukemic cell and the prognostic relevance with AML remain unknown.

Aim of the work

o evaluate ADAM28 expression in newly diagnosed adult Egyptian Acute Myeloid Leukemia patients and to assess its impact on outcome

Review of Literature

Acute Leukemia

Liblood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance (Baker et al., 2018).

Epidemiology

Leukemia is the common name for several malignant disorders that present with increased numbers of leucocytes in the blood and/or the bone marrow. The dominantly presenting leukemia cells may be mature such as in chronic lymphocytic leukemia (CLL), or precursor cells of various lineage such as in the acute leukemias, or both precursor and mature cells as in chronic myeloid leukemia (CML) (Hayakawa et al., 2016).

Leukemias may present at all ages, from the newborn to the very old, but different forms have very different age distributions, with acute lymphoblastic leukemia (ALL) most common in early childhood and rare in adults, whereas acute myeloid leukemia (AML) is being less common than ALL in children but increasingly common in older adults. CML is very rare in young children, and CLL, the most common form of