

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Glypican-3: A Promising Biomarker for Hepatocellular Carcinoma Diagnosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By **Al Saeed Ezzat Ibrahim Ibrahim**

M.B.B.Ch., Cairo University

Under supervision of

Prof. Dr. Hanan Mahmoud Mohammad Badawy

Professor of Internal Medicine, Hepatology & Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Enas Al Khedr Mohammad Al Sayed

Assistant Professor of Internal Medicine, Hepatology & Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Amira Isaac Samaan Isaac

Lecturer of Internal Medicine, Hepatology & Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Hanan Mahmoud Mohammad Badawy, Professor of Internal Medicine, Hepatology & Gastroenterology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Enas Al Khedr Mohammad Al Sayed, Assistant Professor of Internal Medicine, Hepatology & Gastroenterology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Amira Isaac Samaan Isaac, Lecturer of Internal Medicine, Hepatology & Gastroenterology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Al Saeed Ezzat

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	3
Review of Literature	
Hepatocellular Carcinoma (HCC)	4
Glypican-3	39
Patients and Methods	45
Results	51
Discussion	79
Summary and conclusion	89
Recommendations	93
References	94
Arabic Summary	<u>-</u>

List of Abbreviations

Full term Abb. ¹⁸F-FDG...... ¹⁸F-fluorodeoxyglucose A1ATD...... α1-Antitrypsin deficiency ADC apparent diffusion coefficient ADCC...... Antibody-dependent cellular cytotoxicity AFP...... Alpha feto protein AFP-L3 Lens culinaris agglutinin-reactive AFP BALB/c Albino, laboratory-bred strain BCLC...... Barcelona clinical liver cancer staging system CD4...... Cluster of differentiation 4 CDC Complement-dependent cell cytotoxicity CEUS...... Contrast-enhanced ultrasound CLC..... Chronic liver cirrhosis CSPH...... Clinically significant portal hypertension CT......Computerized tomography DCP Des-γ-carboxy prothrombin DWI Diffusion-weighted imaging EASL European Association for the Study of the Liver EGF Epidermal growth factor GPC-3.....Glypican3 GPI......Glycosylphosphatidylinositol HBV..... Hepatitis B virus HCC..... Hepatocellular carcinoma HCV..... Hepatitis c virus HFL Hepatic focal lesion HIV Human immunodeficiency virus IGFs..... Insulin-like growth factors LMR..... Lymphocyte-to-monocyte ratio

List of Abbreviations cont...

Abb.	Full term
LT	. Liver transplant
	. Multi-detector helical CT
MPCT	. Multiphasic helical computerized tomography
	. Magnetic resonance Imaging
	. Nonalcoholic fatty liver disease
NASH	. Nonalcoholic steatohepatitis
NLR	. Neutrophil—to-lymphocyte ratio
PDGF	. Platelet-derived growth factor
PET	. Positron emission tomography
PLR	. Platelet-to-lymphocyte ratio
PS	. Performance status
PVT	. Portal vien thrombosis
RFA	. Radio frequency ablation
ROC	. Receiver operating Characteristics
sGPC3	. Soluble form of glypican3
SqCC	. Squamous cell carcinoma
T2DM	. Type 2 diabetes mellitus
TACE	. Trans arterial chemo embolization
TGF	. Transforming growth factor
VEGF	. Vascular endothelial growth factor
WHO	. World health organization

List of Tables

Table No.	Title	Page No.
Table (1):	The mean age of patients in both gr	oups51
Table (2):	Demographic characteristics of t studied groups	
Table (3):	Comparison between the two groups regarding baseline hematole biochemical profile	ogical &
Table (4):	Comparison between the two groups regarding Baseline levels (ng/mL) & Glypican 3 (ng/mL)	of AFP
Table (5):	Comparison between different ult findings among studied groups	
Table (6):	Descriptive data of CT finding is	
Table (7):	Comparison between levels of serving/mL) and Glypican 3 before a month after intervention amongroup	and one g HCC
Table (8):	Comparison between serum AFP level before and one month after of treatment modalities among HCC g	(ng/mL) lifferent
Table (9):	Comparison between serum Glyplevel before and one month after of treatment modalities among HCC g	lifferent
Table (10):	Comparison between AFP levels at and one month after interven different number of focal lesions	tion in
Table (11):	Comparison between glypican 3le baseline and one month after interin different number of focal lesions	rvention

List of Tables cont...

Table No.	Title	Page No.
Table (12):	Comparison between AFP levels at b and one month after intervent different sizes of hepatic focal lesions	ion in
Table (13):	Comparison between GLP3 lev baseline and one month after inter- in different sizes of hepatic focal lesion	vention
Table (14):	Correlation between Baseline AFP vother parameters in both cirrhos HCC group	is and
Table (15):	Correlation between baseline glyp and all other parameters in both ci and HCC groups	rrhosis
Table (16):	Comparison between baseline level (ng/mL) and other parameters amongroup	ng HCC
Table (17):	Comparison between baseline G 3levels (ng/dL) and other para among HCC group.	lypican meters
Table (18):	Diagnostic performance of GPC-3 & detection of HCC.	AFP in

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	HCV mechanisms for carcinogensis	8
Figure (2):	Hepatocellular carcinoma	20
Figure (3):	BCLC staging system and treatment strategy	
Figure (4):	Proposed treatment algorithm of med treatment in hepatocellular carcin	
	patients	36
Figure (5):	Sex	52
Figure (6):	AST among the studied groups	54
Figure (7):	ALP among the studied groups	54
Figure (8):	Baseline AFP among the studied group	os56
Figure (9):	Baseline Glypican 3 among the stu	died
	groups	56
Figure (10):	AFP before and after intervention an HCC group.	
Figure (11):	Glypican 3 before and after interventamong HCC group	
Figure (12):	AFP before and after different treatmodalities of HCC.	
Figure (13):	Glypican 3 before and after diffe treatment modalities of HCC	
Figure (14):	Relation between AFP and number hepatic focal lesions.	r of
Figure (15):	Relation between GLP3 and number hepatic focal lesions.	er of
Figure (16):	Relation between AFP and size of her focal lesions.	oatic
Figure (17):	Relation between GLP3 and size of her focal lesions.	oatic

List of Figures cont...

Fig. No.	Title	Page No.
Figure (18):	Correlation between AFP & AST	74
Figure (19):	ROC curve for baseline GPC-3	
	levels in prediction of HCC	78

Introduction

HCC is considered to be the fifth commonest cause of cancer-related morbidity. Moreover, HCC incidence is rapidly rising at alarming rates, and it has become a major global health concern (Kimhofer et al., 2015).

risk factors for HCC either Egypt, the are environmental- or host/genetic-related risk factors. In the last years, there is a tangible improvement of both screening and surveillance strategies of HCC in Egypt. The unprecedented national screening campaign launched by the end of 2018 is a mirror image of this improvement. While the improvement of the HCC prevention requires the governmental health administration to implement health policies. Although the diagnosis of Egyptian HCC patients follows the international guidelines but HCC treatment options are limited in terms of cost. In addition, there are limited Egyptian reports about HCC survival and relapse. Both basic and clinical HCC research in Egypt is still limited compared to worldwide (Rashed et al., 2020).

AFP levels have been dropped from current surveillance guide-lines in Europe and the United States because of its low sensitivity and specificity. Therefore, a novel biomarker with superior diagnostic accuracy than AFP is greatly desired (Liu. et al., 2014).

1

Glypican-3 (GPC3) is a member of the glypican family of glycosyl-phosphatidylinositol-anchored cell-surface heparansulfate proteoglycans. Its levels increase considerably in patients with HCC, while GPC3 is not detected in healthy liver tissue, so it has been identified as a useful tumor marker for HCC diagnosis (Rojas et al., 2018). Investigation of usefulness of serum GPC3 level showed that GPC3 protein is an early sensitive and specific serum marker for initial diagnosis of HCC and for HCC recurrence after liver transplantation (Yu et al., 2015).