

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Dickkopf-1(DKK1): A Diagnostic Marker for Hepatocellular Carcinoma (HCC) On Top Of Chronic Hepatitis C Virus Related Diseases

Thesis

Submitted for Partial Fulfillment of Master Degree in INTERNAL MEDICINE

By Mina Helal Samy

M.B.B.Ch, Faculty of Medicine, Cairo University. Resident of Gastroenterology at El Sahel Teaching Hospital.

Supervised By

Prof.Dr/Zainab Ahmed Ali-Eldin

Professor of Internal Medicine, Hepatology and Gastroenterology -Faculty of Medicine - Ain Shams Universit

Prof.Dr/ Hossam Samir Al Baz

Assistant Professor of Internal Medicine, Hepatology and Gastroenterology - Faculty of Medicine - Ain Shams University

Dr/ Gina Gamal Naguib

Lecturer of Internal Medicine, Hepatology and Gastroenterology -Faculty of Medicine - Ain Shams University

Faculty of Medicine – Ain Shams Univerity. 2021

Acknowledgment

First and foremost, I feel always indebted to All, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr/ Zainab Ahmed Ali-Eldin, Professor of Internal Medicine, Hepatology and Gastroenterology - Faculty of Medicine - Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr/ Hossam Samir Al Baz, Assistant Professor of Internal Medicine, Hepatology and Gastroenterology - Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr/ Gina Gamal Naguib**, Lecturer of Internal Medicine, Hepatology and Gastroenterology - Faculty of Medicine - Ain Shams University, for great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Contents

Items	Page
List of Tables	I
List of Figures	II
List of Abbreviation	III
Introduction	1
Aim of the Work	5
Review of Literature	6
Hepatitis c and liver cirrhosis	6
Hepatocellular carcinoma	51
Dickkopf-1(DKK1)	100
Statistical Analysis	100
Patients and Methods	104
Results	111
Discussion	131
Summary	141
Conclusions	146
Recommendation	147
References	148
Arabic Summary	١

List of Tables

Table No.	Title	Page
Table (1)	American Joint Committee on Cancer (AJCC) staging system for Hepato cellular carcinoma (HCC).	81
Table (2)	Commonly used staging systems.	84
Table (3)	Comparison between Control group (No. = 30), Liver Cirrhosis group (No. = 30) and HCC Group (No. = 30) Regarding Age and Sex.	108
Table (4)	Comparison between laboratory findings of Control group (No. = 30), Liver Cirrhosis group (No. = 30) and HCC Group (No. = 30) Regarding HB, WBCs, Platelets, ALT, AST, Creat, Urea, Albumin, INR, Bilirubin and AFP.	110
Table (5)	Comparison between Liver Cirrhosis group (No. = 30) and HCC Group (No. = 30) Regarding HB, WBCs, Platelets, ALT, AST, Creat, Urea, Albumin, INR, Bilirubin and AFP.	111
Table (6)	Distribution of the studied cases according to Size, Number and PV thrombosis in HCC group.	112
Table (7)	Comparison between Liver Cirrhosis group (No. = 30) and HCC Group (No. = 30) Regarding Child Score.	115
Table (8)	Comparison between Control group (No. = 30), Liver Cirrhosis group (No. = 30) and HCC Group (No. = 30) Regarding DKKA1(pg/ml).	116
Table (9)	Comparison between DKKA1(Pg/mL) and the different HCC criteria(Size-Number-Associated PV thrombosis)	117
Table (10)	Comparison between DKKA1(Pg/mL) and Child Score in patient group.	118

Table No.	Title	Page
Table (11)	Correlation between DKKA1 (pg/ml) With Age, HB, WBCs, Platelets, ALT, AST, Creat, Urea, Albumin, INR, Bilirubin and AFP in patient groups(Liver Cirrhosis group and HCC group).	119
Table (12)	Correlation between DKKA1 (pg/ml) With Age, HB, WBCs, Platelets, ALT, AST, Creat, Urea, Albumin, INR, Bilirubin and AFP in Liver Cirrhosis group.	120
Table (13)	Correlation between DKKA1 (pg/ml) With Age, HB, WBCs, Platelets, ALT, AST, Creat, Urea, Albumin, INR, Bilirubin and AFP in HCC group.	121
Table (14)	ROC curve (Control Group and Liver Cirrhosis group) regarding DKKA1 (pg/ml).	123
Table (15)	ROC curve (Control Group and HCC group) regarding DKKA1 (pg/ml).	124
Table (16)	ROC curve (Liver Cirrhosis group and HCC group) regarding DKKA1 (pg/ml).	125

List of Figures

Fig. No.	Title	Page
Fig.(1)	Liver cirrhosis.	14
Fig.(2)	Co- Factors for developing liver cirrhosis.	17
Fig.(3)	Fibro genesis of Liver.	22
Fig.(4)	Pathophysiology of liver Fbrosis.	23
Fig.(5)	Child-Pugh score.	31
Fig.(6)	Complications of liver cirrhosis.	32
Fig.(7)	Pathophysiology of portal hypertension.	35
Fig.(8)	Porto systemic collateral pathways and direction of blood flow in portal hypertension.	40
Fig.(9)	Management of Variceal Bleeding.	41
Fig.(10)	Mechanisms of Hepatic Encephalopathy.	43
Fig.(11)	Management of Hepatic Encephalopathy.	44
Fig.(12)	Hepatorenal Syndrome.	47
Fig.(13)	Current Criteria of Hepatorenal Syndrome.	48
Fig.(14)	Surveillance of HCC (AASLD 2018)	64
Fig.(15)	Stagging of HCC (AASLD 2018)	65
Fig.(16)	Algorithm for investigation of small nodules found on screening in patients at risk for HCC.	66
Fig.(17)	Axial contrast enhanced CT scan showing multiple enhancing masses in the arterial phase.	78
Fig.(18)	Definitely HCC.	79
Fig.(19)	Updated BCLC Staging system and Treatment Strategy.	83
Fig.(20)	An algorithm for management of recurrent HCC.	97
Fig.(21)	Difference between 3 groups regarding Age.	108
Fig.(22)	Difference between 3 groups regarding Sex.	109
Fig.(23)	Distribution of the studied cases according to Size of focal lesions.	113
Fig.(24)	Distribution of the studied cases according to Number of focal lesions.	113
Fig.(25)	Distribution of the studied cases according to PV thrombosis.	114

Fig. No.	Tîtle	Page
Fig.(26)	Difference between two groups regarding Child Score.	115
Fig.(27)	Difference between 3 groups regarding DKKA1 (pg/ml).	116
Fig.(28)	The relation between DKK-1 and the size of Focal lesion.	118
Fig.(29)	Correlation between DKKA1 (pg/ml) and WBCs.	122
Fig.(30)	Correlation between DKKA1 (pg/ml) and AST.	122

List of Abbreviations

AASLD	American Association for the Study of Liver Disease
AFP	Alpha fetoprotein
AJCC	American Joint Committee on Cancer
APASL	Asian Pacific Association for the Study of the Liver
BCAAs	Branched chain amino acids
BCLC	Barcelona Clinic Liver Cancer
CLD	Chronic liver diseases
CLIP	Cancer of the Liver Italian Program
CNNA	Culture-negative neutrocytic ascites
CPT	Child-Pugh-Turcotte
СТ	Computed tomography
DALYs	Disability Adjusted Life Years
DCP	Des-gamma carboxy prothrombin
DILI	Drug-induced liver injury
DKK1	Dickkopf-1
EASL	European Association for the Study of the Liver
EGFR	Epidermal growth factor receptor
ESMO	European Society for Medical Oncology
EVL	Endoscopic variceal ligation
FGF	Fibroblast growth factor
GGT	Gamma-glutamyl transferase
GP73	Golgi protein 73
GPC3	Glypican-3
HAV	Hepatitis A Virus
HBeAg	Hepatitis B virus e antigen
HBsAg	Hepatitis B virus surface antigen

1	
HBV	Hepatitis B virus
HCC	Hepato cellular carcinoma
HCV	Hepatitis C virus
HE	Hepatic encephalopathy
HGF/SF	Hepatocyte growth factor/scatter factor
HR	Hepatic resection
HSP70	Heat-shock protein 70
HVR1	Hyper variable region 1
IBM SPSS	Statistical Package for Social Science
IHVR	Intra hepatic vascular resistance
LC	Liver cirrhosis
LI-RADS	Liver Imaging Reporting and Data System
MELD	Model of End-Stage Liver Disease
MRI	Magnetic Resonance Imaging
MRP-1	Musashi RNA-binding protein 1
MWA	Microwave ablation
NAFLD	Nonalcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
NCCN	National Comprehensive Cancer Network
NS	Non significant
PCR	Polymerase chain reaction
qRT-PCR	Quantitative real-time polymerase chain reaction
RFA	Radiofrequency ablation
RT	Radiation therapy
S	Significant
SBP	Spontaneous Bacterial Peritonitis
SCCA	Squamous cell carcinoma antigen
SVR	Sustained virological response

TACE	Trans arterial chemo embolization
TCF	T-cell factor
TGF-Beta1	Transforming Growth Factor-Beta1
TIMP 1	Tissue inhibitor of metalloproteinase-1
TSGF	Tumor-Specific Growth Factor
US	Ultrasound
VEGF	Vascular endothelial growth factor

INTRODUCTION

LOBOCAN estimates that in 2018, approximately 841,000 new cases of liver cancer and 782,000 related deaths were reported, marking liver cancer as the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma is the most prevalent liver neoplasm, comprising 75 to 85% of all cases. HCC usually occurs in the setting of cirrhosis resulting from different etiological factors (i.e., chronic alcohol consumption, chronic hepatitis B and C viral infection, and obesity) (Bray et al., 2018)

In Egypt, HCC constitutes a significant public health problem. Where it is responsible for 33.63% and 13.54% of all cancers in males and females respectively. Hepatocellular carcinoma occurs in a number of preexisting conditions that commonly includes hepatitis C and B, alcoholic nonalcoholic cirrhosis. This had been strongly linked to the hepatitis C virus epidemic that affected around 10 - 15% of the Egyptian population during the last 3 decades, and was reported as the highest prevalence of HCV in the world (Elghazaly et al., *2018*)

There has been a remarkable increase in the proportion of hepato cellular carcinoma among chronic liver diseases patients. This rising proportion may be explained by the increasing risk factors as hepatitis C virus infection and hepatitis B virus infection (Kanwal et al., 2011)

diagnosis of HCC could be radiological and/or laboratory. Radiological diagnosis depend s largely on ultrasonography, triphasic computed and dynamic magnetic resonance imaging (Dodd et al., 1992)

Laboratory diagnosis of HCC is done either by measurement of circulating biomarkers or by fine needle cytology (Debruuyne et al., 2010)

The American Association For the Study of Liver Diseases surveillance for individuals guideline recommends cirrhosis are liver ultrasound with or without Alfa Fetoprotein every 6 months, because most of the studies showed a benefit of the combination of US and AFP in improving overall survival. AFP provides a sensitivity of around 60% and a specificity of around 90% (Singal et a., 2014; Gupta et al., 2003)

Because AFP has poor sensitivity for identifying HCC, AASLD recommends against using it alone to screen for HCC in high-risk patients. More data suggested strategies to increase