

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Prognostic Factors for Survival in Adult Patients with Cerebral Low-Grade Glioma

Systematic Review Submitted for Partial Fulfillment of Master Degree in Neurosurgery

<u>By</u>

Michael Zohney Zakhary Johny

M.B.B.Ch., Faculty of Medicine, BeniSuef university.

<u>Under supervision of</u>

Prof.Dr. Ashraf Gamal Eldin Al-Abyad

Professor of Neurosurgery

Department of Neurosurgery, Ain Shams University.

Prof.Dr. Hesham Anwar Abdelraheem

Professor of Neurosurgery,
Department of Neurosurgery, Ain Shams University.

Dr. Hesham Mohamed Abouelela Abdelmawla Radwan

Lecturer of Neurosurgery,
Department of Neurosurgery, Ain Shams University.

Faculty of Medicine, AIN SHAMS UNIVERSITY 2021

Table of contents

Table of contents	2
Table of figures	4
List of Abbreviations	6
List of Tables	7
Introduction	8
Aim of work	11
Literature review	12
Embryology	12
Anatomy	13
Molecular aspects	18
The new 2021 WHO Classification	20
Epidemiology	23
Clinical Presentation	24
Natural History of the disease	24
Symptoms	24
Symptoms according to location	25
Frontal lobe	25
Parietal lobe	26
Temporal lobe	26
Disconnection syndromes	27
Radiological Features	
Magnetic Resonance Images (MRI)	
Magnetic resonance spectroscopy (MRS)	
O = = = = = = = = = = = = = = = = = = =	

☐ Table of contents

Perfusion MRI	31
Positron Emission Tomography (PET)	32
Functional MRI (fMRI)	33
Management & treatment	34
Anti-epileptic drug treatment	34
Surgical management of LGG	34
Post-surgical management of LGG:	36
Role of radiotherapy	37
Role of chemotherapy	39
Systematic review	41
Materials and methods	41
Literature search	41
Eligibility criteria	42
Data extraction	43
Results	45
Result of literature search	45
Characteristics of included studies	45
Patient-related factors	46
Tumor-related factors	55
Treatment-related factors	65
Prognostic evaluations	77
Discussion	116
Conclusion	123

Table of figures

Figure 1 - Normal glia. [14]	
Figure 2 - Normal brain cortex [15]	.14
Figure 3 - Reactive glia. (A, B) [14]	.15
Figure 4 - Schematic presentation for astrocytes	.16
Figure 5 - Normal brain-CSF barrier [16]	.17
Figure 6 - Diffuse astrocytoma histology [17]	.17
Figure 7 - MRI showing non-enhancing LGG [50]	.30
Figure 8 - Enhancement in LGG [39]	.30
Figure 9 - Astrocytoma G. II MRS [53]	.31
Figure 10 - MRI DWI of ganglioglioma [39]	.32
Figure 11 - fMRI of LGG [39]	.33
Figure 12 - Etxaniz 2017 graphs acc. to age, KPS	.47
Figure 13 - Wahl 2017 graphs acc. to age, KPS	.48
Figure 14 - Shaw 2012 graph acc. to age	.48
Figure 15 - Daniels 2011 graphs acc. to age	.49
Figure 16 - Houillier 2010 graphs acc. to age, KPS	.49
Figure 17 - El-hateer 2009 graph acc. to Age, KPS, Seizures	.50
Figure 18 - Shaw et al. 2002 graphs acc. to age	.51
Figure 19 - Lo 2001 graphs acc. to Age, KPS, Seizures	.52
Figure 20 - Leighton 1997 graphs acc. to Age, KPS, Seizures	.53
Figure 21 - Nicolato 1995 graphs acc. to Age, KPS	.54
Figure 22 - Breen 2020 graph acc. to tumor diameter	.56
Figure 23 - Etxaniz 2017 graphs acc. to subtype, tumor volume	.57
Figure 24 - Wahl 2017 graphs acc. to subtype, tumor volume	.58
Figure 25 - Youland 2013 graphs rates acc. to subtype	.58

☐ Table of figures

Figure 26 - Shaw 2012 graphs acc. to subtype	59
Figure 27 - Daniels 2011 graphs acc. to subtype, tumor diameter	60
Figure 28 - Houillier et al. 2010 graphs acc. to subtype	61
Figure 29 - El-hateer 2009 graphacc. to tumor diameter	61
Figure 30 - Schomas 2009 graph acc. to subtype	61
Figure 31 - Shaw 2002 graphs acc. to subtype, tumor diameter	62
Figure 32 - Lo 2001 graphs acc. to subtype, enhancement	63
Figure 33 - Leighton 1997 graphs acc. to subtype	64
Figure 34 - Nicolato 1995 graphs acc. to tumor diameter	64
Figure 35 - Breen 2020 graphs acc. to EOR, RT dose	66
Figure 36 - Etxaniz 2017 graphs acc. to EOR, Post-op RT	67
Figure 37 - Youland 2017 graphs acc. to EOR	67
Figure 38 - Youland 2017 graphs acc. to EOR, Adj therapy	68
Figure 39 - Buckner 2017 graphs acc. to EOR, Adj therapy	69
Figure 40 - Youland 2013 graphs acc. to EOR, RT Dose	70
Figure 41 - Shaw 2012 graph acc. To EOR, adj therapy	71
Figure 42 - Daniels 2011 graphs acc. to EOR	71
Figure 43 - Houillier 2010 graphs acc. to EOR, RT timing	72
Figure 44 -Schomas 2009 graphs acc. to EOR	72
Figure 45 -McGirt 2008 graphs acc. to EOR	72
Figure 46 - Shaw 2002 graphs acc. to EOR, RT dose	73
Figure 47 - Lo 2001 graphs acc. to EOR, RT dose	74
Figure 48 - Leighton 1997 graphs acc. to EOR, Post-op RT	75
Figure 49 - Nicolato 1995 graphs acc. to EOR, RT dose	76
Figure 50 - PRISMA flow diagram	78

Abb.

List of Abbreviations

DLGG.....: Diffuse low grade glioma.

IDH: Isocitrate dehydrogenase.

G: Grade.

GBM...: Glioblastoma multiforme.

GFAP...: Glial fibrillary acidic protein.

H&E..: Hematoxylin & eosin stain.

ATRX...: Alpha thalassemia mental retardation X-linked gene.

TP53...: Tumor protein 53 gene.

MRS...: Magnetic resonance spectroscopy.

rCBV...: Relative cerebral blood volume.

PET...: Positron Emission Tomography.

OS: Overall survival.

PFS...... Progression-free survival.

Full term

GTR Gross total resection.

NTR Near total resection.

STR.....: Subtotal resection.

SEER: Surveillance, Epidemiology, and End Results.

RT.....: Radiotherapy.

KPS: Karnofsky Performance Scale.

PCV.....: procarbazine, CCNU, and vincristine.

TMZ.....: Temozolomide.

TERT: Telomerase Reverse Transcriptase.

List of Tables

Table 1: Characteristics of included studies	79
Table 2: Cochrane risk of bias for randomized trials	82
Table 3: Newcastle-Ottawa scale for cohort studies	83
Table 4: Patient-related factors (Age)	87
Table 5: Patient-related factors (KPS)	90
Table 6: Patient-related factors (Seizures)	93
Table 7: Tumor-related factors (Histological subtype)	95
Table 8: Tumor-related factors (IDH-mutatton)	98
Table 9: Tumor-related factors (1p/19q codeletion)	99
Table 10: Tumor-related factors (size)	101
Table 11: Treatment-related factors (surgery)	104
Table 12: Treatment-related factors (Adj. therapy)	107
Table 13: Summary of each prognostic factor in OS	110
Table 14: Summary of each prognostic factor in PFS	112
Table 15: Each factor and associated studies	114

Introduction

Low grade gliomas (LGGs) account for approximately 5-10% of the primary CNS tumors diagnosed in USA each year [1]. Historically, histological classification of these tumors was either pure/mixed astrocytomas, or oligodendrogliomas.

In 2021, WHO revised 5th edition classification groups IDH-mutant diffuse astrocytic tumors together in one type (Astrocytoma, IDH-mutant), and oligodendrogliomas into (Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted).

Also, the new classification system the category uses "Circumscribed astrocytic gliomas" for other circumscribed astrocytic (pilocytic astrocytomas, pleomorphic tumors xanthoastrocytomas subependymal aiant and cell astrocytomas) [2].

Molecular biology and genetics helped understanding the tumor behavior for better defining subgroups at increased risk of recurrence, WHO grade II tumors are subdivided into three classes [3]:

- 1) oligodendroglioma (1p/19q codeleted tumors)
- 2) IDH-mutated non-1p/19q codeleted astrocytoma
- 3) IDH wild-type astrocytoma

IDH mutations are frequently identified in WHO grade 2 and 3 oligodendrogliomas and astrocytomas. Grade 1 gliomas, such

Introduction

as gangliogliomas and pilocytic astrocytomas, do not express IDH mutations [4].

The presence of an IDH mutations in a glioblastoma defines a secondary glioblastoma that evolved from a lower-grade tumor, rather than a primary Grade 4 glioblastoma, which is IDH wild-type.

Whilst CT and PET, respectively, play adjunct roles in detecting calcifications in the pre-operative diagnosis of oligodendroglioma and identifying 'hot' spots as a potential sign of tumor hyperactivity and/or progression [5], the mainstay of radiological diagnosis of LGG is enhanced MRI.

Typically, LGG is identified as a non-enhancing, T1-hypointense, T2- and FLAIR hyperintense mass lesion; contrast enhancement of as little as 1.2 cm3 may be enough to distinguish Grade 4 glioblastoma from LGG, with very high specificity [6].

However, the controversy in LGG management, with regards to imaging, lies not in diagnosis; rather, what's the next step after diagnosis.

Historically, LGG has been considered to be inactive or 'benign', at least on radiological grounds, however, consecutive MRI studies, coupled with a deeper understanding of biological behavior, has led to the development of a four step framework proposing to model the true natural history of LGG, all the way from MR silence, (with presumed occult glioma stem cell

Introduction

proliferation), to frank malignant transformation of LGG to glioblastoma [7,8].

Conservative management, watchful waiting and serial MRI scans are used specially for incidentally discovered lesions or eloquent tumors. Surgical resection is associated with low morbidity and mortality [9], especially in high volume quaternary hospitals, maximizing extent of resection is likely to convey significant progression-free survival and overall survival benefit [10, 11].

Aim of work

The reason for this investigation is to analyze the collective data from studies to define prognostic factors for overall survival in adult patients with cerebral low grade gliomas.

Our primary goal is to assess survival in adult patients with cerebral low grade glioma, and define prognostic factors with its relative importance.

Also, to evaluate the best plan of management for each patient with benefits of improvement and recovery, incidence of complications, symptoms recurrence and patient's quality of life.

Literature review

Embryology

Cortex and neurons development start as early as the 5th week of gestation and complete by 28 weeks [12], there are three major stages: proliferation, migration and organization.

Neurons proliferate and develop from glial stem cells at the surface of ventricles and ganglionic eminence [12].

The migration of neurons has been traditionally categorized into two types, radial and tangential. In radial migration (*Piadirected migration*), neurons follow a radially oriented glial scaffold directly to the cortical surface, with later-forming neurons passing through early layers to pial surface [13].

This regular development pattern is disturbed with malformations, infections (such as CMV) and migrational disorders [12].

In tangential migration, GABAergic cells from ganglionic eminence take a tangential route through the cortex and provide centers with controlling functions [12].

The cortex undergoes folding into gyri to accommodate more extra cells, finally neurons in cortex organize to form local connections and send large tracts with remote axons such as corpus callosum to connect both hemispheres [12]. This development requires normally functioning genes and is easily