

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A Systematic Review for Partial Fulfilment of Master Degree In Neurosurgery

Posterior Lumbar Fixation Surgeries, Indications and Approaches
(Posterolateral Fixation, PLIF and TLIF)

Postgraduate Student: Muhamed Abdelmoez Abdelzaher

Degree: M.B.B.S., Zagazig University

Under Supervision of

Prof. Dr. Adel Nabih Mohamed

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Faisal Toubar

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University.

Dr. Omar El Farouk Ahmed

Lecturer of Neurosurgery, Faculty of Medicine, Ain Shams University.

> Faculty of Medicine Ain Shams University 2021

وقل اعملوا فسيرى الله عملوا عملوا فسيرى الله عملوا عملوا فسيرى الله عملوا عملوا فسيرى الله عملوا عملوا فسيركوالله

ةروس ةبوتلا ةيلأا

All praise to Allah, the most gracious and the most merciful, who guides us to the right way.

I would like to thank heartily and to express my sincere gratitude to Prof. Dr. Adel Nabih Mohamed, Professor of Neurosurgery, Faculty of medicine, Ain Shams University for his endless flow of advices, valuable ideas, and helpful instructions.

I am also, deeply grateful to, Prof.Dr. Ahmed Faisal Toubar, Professor of Neurosurgery, Faculty of medicine, Ain Shams University for his illuminating discussion, kind cooperation and endless support throughout this work.

My sincere thanks and appreciation to Dr. Omar El Farouk Ahmed, Lecturer of Neurosurgery Faculty of medicine, Ain Shams University for his continuous and support in completing this work.

Finally, I would like to thank all patients, staff members and my dear colleagues in Neurosurgery Department, Ain Shams University, for their sincere feeling and cooperation all over the work.

Dedication

To

My Father, My Mother

My brothers and my sisters

All My Family

All my Colleagues and

Professors

List of Contents

	Page
List of Abbreviations	I
List of Tables	II
List of Figures	III
Introduction	1
Aim of the work	3
Review of literature	
Anatomy of the Lumbar Spine	4
Pathology Of Lumbar Spine	27
Lumbar Interbody Fusion	58
Techniques of Lumbar Interbody Fusion	66
Systematic Review	79
Results	85
Discussion	103
Conclusion	115
References	117
Arabic Summary	2-1

List of Abbreviations

Abb.	Full term
ALIF	Anterior lumbar interbody fusion
ALL	Anterior Longitudinal Ligament
AP	Antero-Posterior
CT	Computed tomography
ECM	Extra Cellular Matrix
GAGs	Glycosaminoglycans
IAP	Inferior Anteroposterior
ITL	Inter-Transverse "Ligament"
IVF	Intervertebtal foramen
JOA	Jabanese Orthopedic Analogue
LBOS	Low Back Outcome Scale
LF	Ligamentum Flavum
MRI	Magnetic Resonance imaging
ODI	Oswestry Disability Index
PA	Posterior to Anterior
PcoS	Prospective comparative study
PEEK	Polyetheretherketone
PLC	Posterior Ligamentous Complex
PLIF	Posterior lumbar interbody fusion
PLL	Posterior Longitudinal Ligament
RcoS	retrospective comparative study
RCT	randomized controlled trail
RD	Repeated Discectomy
RhBMP-2	Recombinant human bone morphogenetic protein
RTAs	Road Traffic Accidents
SAP	Superior Anteroposterior Dimension
SCI	Spinal Cord Injury
SF	Segmental Fusion
TFLs	Transforaminal Ligaments
TLIF	Transforaminal Lumbar Interbody Fusion
TLISS	Thoracolumbar Injury Severity Score
VAS	Visual Analogue Scale

List of Tables

Table	Title	Page
Table of Results		
(1)	Study characteristics of recurrent lumbar herniation	99
(2)	Study characteristics of lumbar fracture	100
(3)	Study characteristics of spondylolithesis	101
(4)	Study characteristics of spondylodiscitis	102

List of Figures

Fig.	Elst of Figures	Page
	of Review	
(1)	Graphic rendering of oblique dorsal view of L5 vertebra showing the parts of thevertebral arch.	5
(2)	Sagittal illustration of the lumbar spine demonstrating the three-column theory.	6
(3)	Osseous structures of the lumbar spine, A; Lumbar Vertebra. B; Posterior view of the lumbarspine.	7
(4)	The intervertebral disc.	7
(5)	The annulus fibrosus is composed of layers of collagen fibers	8
(6)	Schematic view of routes for nutrient transport into avascular disc and resulting nutrient profiles.	12
(7)	The Sinuvertebral nerve.	14
(8)	A: Ligaments of the lumbar spine, B: Posterior view of ligaments of the lumbar spine, C: Lateral view of ligaments of lumbar.	16
(9)	Transforaminal ligaments.	18
(10)	Illustrations of the organization of the posterior lumbar musculature showing the multifidus (A), the longissimus (B), and the iliocostalis (C), (D), computed tomographic coronal reconstruction showing the arrangement of the posterior lumbar musculature: multifidus (dotted arrow), longissimus (thin arrow), and iliocostalis (thick arrow).	19
(11)	The Shape and boundaries of the Intervertebral Foramen.	21

Fig.		Page
	Illustration demonstrating changes in IVF	
(12)	dimensions with increasing age, height, and	22
	weight.	
(13)	Blood supply of the lumbar spine, A: Arterial	
	supply of the lumbar spinal canal, B: The	24
	vertebral venous plexus system.	
(14)	Lumbar spinal nerve and surrounding anatomy.	
	Representative MR images shows recurrent	25
	L4–5 disc herniation with and without	23
	contrast.	
(15)	Representative MR images of recurrent lamber	31
	disc herniation.	J1
(16)	Holdsworth (two-column) and Denis (three-	35
	column) theories.	
(17)	Denis classification of compression fractures.	36
(18)	Denis classification of burst fractures.	37
(19)	Denis classification of flexion-distraction	38
	injuries.	30
(20)	Denis classification of fracture-dislocations.	39
(21)	The three major injury groups of the AO	40
	classification.	40
(22)	Dynamic Lumbosacral X-rays (Flexion and	41
	Extension).	
(23)	Grading of Spondylolisthesis.	43
(24)	Pathogenesis of discitis.	48
(25)	CT scan sagittal reconstruction showing	54
	postoperative spondylodiscitis at L5-S1.	
(26)	MRI Postoperative spondylodiscitis at L4-L5.	55
(27)	Photographs show reduction in strain on	62
	posterior implants when a cage is placed in	U

Fig.		Page
	intervertebral disc space.	
(28)	Subsidence of cage into inferior endplate of L5 is obvious. Technical factors that may have predisposed to subsidence include use of single small cage placed centrally.	65
(29)	Surgical technique of posterolateral fusion Careful preparation of the fusion bed is important and consists of: a decortication of the transverse process and facet joints and isthmus.	71
(30)	Surgical technique of posterior lumbar interbody fusion.	72
(31)	Circumferential fusion a young (28 years) female patient with endplate changes (Modic Type II) undergoing pedicle screw fixation L5/S1 and posterolateral fusion in combination with a cage augmented anterior lumbar interbody fusion.	78

Introduction

The first posterior lumbar fusion was introduced by Cloward in 1953 for degenerative disc disease spondylolisthesis. Since then, pedicle screw instrumentation has enabled a rigid construct to promote stability and fusion for numerous spinal pathologies including: trauma, tumours, deformity and degenerative diseases. (Kanter Mummaneni, 2008)

Lumbar arthrodesis is a commonly performed surgical procedure for the treatment of spondylosis, trauma, infection, neoplasm, and spinal instability. (Brantigan et al., 2004)

A posterolateral fusion with autologous bone graft has traditionally resulted in acceptable clinical results; however, reported fusion rates have been inconsistent. (Matsumoto et al., 1992)

addition of internal With the fixation using posterolateral transpedicular screw instrumentation, fusion rates have improved significantly especially in cases of instability. (Brantigan et al., 2004)

Performing an interbody arthrodesis may further improve the clinical results by eliminating the disc as a potential pain generator, improving fusion rates, and restoring intervertebral height and lumbar lordosis. (DiPaola & Molinari, 2008)

interbody Posterior lumbar fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) create

intervertebral fusion by means of a posterior approach. Both techniques are useful in managing degenerative disk disease, severe instability, spondylolisthesis, deformity, and pseudarthrosis. (**DiPaola & Molinari, 2008**)

Successful results have been reported with allograft, various cages (for interbody support), autograft, and recombinant human bone morphogenetic protein-2. Interbody fusion techniques may facilitate reduction and enhance fusion. The rationale for PLIF and TLIF is biomechanically sound. However, clinical outcomes of different anterior and posterior spinal fusion techniques tend to be similar. (**DiPaola & Molinari, 2008**)

PLIF has a high complication rate (dural tear. 5.4% to 10%; neurologic injury, 9% to 16%). these findings, coupled with the versatility of TLIF throughout the entire lumbar spine, may make TLIF the ideal choice for all-posterior interbody fusion. (**DiPaola & Molinari, 2008**)