

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Role of Occiput-Spine Angle Measurement during First Stage of Labor as a Predictor of Progress of Labor and Outcome

Thesis

Submitted for Partial Fulfillment of the Master Degree (M.Sc.) in Obstetrics and Gynecology

By

Mohamed Samir Noamany Ismail

(M.B.,B.CH., Faculty of Medicine –Ain Shams University 2017)
Resident of Obstetrics & Gynecology
Faculty of Medicine – Ain-Shams University

Supervised by:

Prof. Sherif Mohamed Abd El Hameed

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain-Shams University

Dr. Al Hassan Mohammad Khedr

Lecturer of Obstetrics & Gynecology Faculty of Medicine - Ain-Shams University

> Faculty of Medicine Lin-Shams University

> > 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Sherif Mohamed Abd**El Hameed, Professor of Obstetrics & Gynecology department - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Al Hassan**Mohammad Khedr, Lecturer of Obstetrics &
Gynecology, Faculty of Medicine, Ain Shams University,
for his great help, active participation and guidance.

I would like to express my thanks to **Dr.**Mohammed El Sayed the sonographer for her great effort

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Samin

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Normal Labor	4
Abnormal Labor	14
Role of Ultrasound in Prediction of Progress of	Labor23
Patients and Methods	55
Results	61
Discussion	74
Summary	81
Conclusion and Recommendations	84
References	86
Arabic Summary	

List of Tables

Table No.	Title F	age No.
Table (1-1):	Labor progress in different stages of l	abor8
Table (5-1):	Basal characteristics of the studied ca	ses63
Table (5-2):	Labor progress among the studied cas	ses63
Table (5-3):	Neonatal outcome among the stucases	
Table (5-4):	Correlation between occiput-spine a and other variables among the stucases	died
Table (5-5):	Comparison according to mode of deli regarding occiput-spine angle (°)	v
Table (5-6):	Diagnostic performance of occiput-s angle in predicting operative delivery	_
Table (5-7):	Diagnostic characteristics of occiput-s angle ≤ 123.0° in predicting opera delivery	ative
Table (5-8):	Diagnostic performance of occiput-s angle in predicting normal vag delivery	ginal
Table (5-9):	Diagnostic characteristics of occiput-s angle>123.0° in predicting normal vag delivery	ginal

List of Figures

Fig. No.	Title Pag	e No.
Figure (3-1):	Ultrasound image and drawing t	: 0
	demonstrate the fetal head directio	n
	described as the angle between a vertical	al
	line from inferior apex of the symphysic	
	and another line drawn perpendicular t	
	the widest diameter of the fetal head	25
Figure (3-2):	Ultrasound image and drawing t	0
	demonstrate the angle of progression of	\mathbf{f}
	the fetal head described as the angl	le
	between a line through the midline of th	ıe
	symphysis pubis and a line from the	
	inferior apex of the symphysis to th	ıe
	leading part of the fetal skull	
Figure (3-3):	Ultrasound image and drawing t	
	demonstrate the progression distance of	
	the head described as the distance	
	between a vertical line from inferior ape	
	of the symphysis to the leading edge of	
	the fetal skull.	
Figure (3-4):	Head-perineum distance on tran	
	perineal ultrasound	
Figure (3-5):	Angle of progression on trans perinea	
	ultrasound	
Figure (3-6):	Head-symphysis distance on tran	
	perineal ultrasound.	
Figure (3-7):	Head direction on intra partum tran	
	labial ultrasound	
Figure (3-8):	OSA Ahmed MM	
Figure (3-9):	OSA	
Figure (5-1):	NICU admission among the studied case	
Figure (5-2):	Correlation between occiput-spine angle	
	and second stage duration	47

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (5-3):	Comparison according to mode of deli	very
	regarding occiput-spine angle	48
Figure (5-4):	ROC curve for occiput-spine angle	e in
	predicting operative delivery	49
Figure (5-5):	Diagnostic characteristics occiput-s	pine
	angle≤123.0° in predicting opera	ative
	delivery	51
Figure (5-6):	ROC curve for occiput-spine angle	e in
	predicting normal vaginal delivery	52
Figure (5-7):	Diagnostic characteristics of occiput-s	pine
	angle>123.0° in predicting normal vag	ginal
	delivery	54

List of Abbreviations

Abb.	Full term	
ACOG	American College of Obstetricians and	
	Gynecologists	
AP	Antero posterior	
<i>CCT</i>	Controlled cord traction	
<i>ICU</i>	Intensive Care Unit	
MVUs	Montevideo units	
<i>OSA</i>	Occiput- spine angle	
PGE2	$Prostaglandin~E_2$	
<i>U/S</i>	Ultrasound	
WHO		

PPROTOCOL OF A THESIS FOR PARTIAL FULFILLMENT OF MASTER DEGREE IN OBSTETRICS & GYNAECOLOGY

Title of the Protocol: Role of occiput-spine angle measurement during first stage of labor as a predictor of progress of labor and outcome

Postgraduate Student: Mohamed Samir Noamany Ismail

Degree: M.B.B.Ch., Faculty of Medicine – Ain Shams University

(2017)

Resident of Obstetrics & Gynecology Ain Shams Maternity Hospital

DIRECTOR: Prof.: Sherif Mohamed Abd El Hameed

Academic Position: Professor of Obstetrics and Gynecology

Faculty of Medicine - Ain Shams University

Department: Obstetrics & Gynecology – Ain Shams University

Co-DIRECTOR: Dr.: Al Hassan Mohammad Khedr

Academic Position: Lecturer of Obstetrics and Gynecology

Faculty of Medicine-Ain Shams University

Department: Obstetrics & Gynecology – Ain Shams University

What is already known on this subject? AND What does this study add?

- Deflexed cephalic presentations are an important cause of obstructed labor and account for 1/3cesarean deliveries as the result of labor arrest (Caughey AB, Cahill AG, et al.,2014)
- The diagnosis of fetal head deflexion traditionally is based on digital examination in labor (Hintze J,2011)
- Early detection of deflexed cephalic presentation, measuring occiputspine angle, Its progression and its relationship with course and outcome of labor.

1.INTRODUCTION

The World Health Organization (WHO) defines normal birth as spontaneous in onset, low risk at the start of labor and remaining so throughout labor and delivery. The infant is born spontaneously in the vertex position between 37 and 42 completed weeks of pregnancy. After birth, mother and infant are in good condition (World Health Organization, 2010).

Spontaneous vaginal delivery without obstetric intervention is the favorable outcome for most pregnancies. However, some women fail to progress in the second stage of labor and so require operative delivery. Management options include primary Cesarean section, instrumental delivery (forceps or vacuum) (Grobman et al., 2018).

In the vertex presentation, the vertex is flexed such that the chin rests on the fetal chest, allowing the suboccipito-bregmatic diameter of approximately 9.5 cm to be the widest diameter through the maternal pelvis. This is the smallest of the diameters to negotiate the maternal pelvis (Kilpatrick et al., 2012).

The arrest of labor progression is the leading cause of obstetric intervention including cesarean delivery and instrumental vaginal delivery. In the attempt to decrease the incidence of primary cesarean delivery the classical definition of abnormal labor course has been revised recently and a longer duration of the second stage has been declared as acceptable before diagnosing a labor arrest (up to 4 hours or more in nulliparous and to 3 hours or more in multiparous) (Caughey et al., 2014).

Some authors however have challenged this new statement claiming that based on the available evidence, a second stage of labor beyond 3 hours is unsafe for the unborn infant (Leveno et al., 2016).

Deflexed cephalic presentations are an important cause of obstructed labor and account for 1/3cesarian deliveries as the result of labor arrest. Three varieties of deflexed cephalic malpresentation traditionally are described according to the degree of head extension including sincipit, brow, face (Boyle et al., 2013).

In some of these cases such as brow presentation the achievement of vaginal delivery is not possible because the mean fetal head presenting diameter (mento-occipital diameter) is 13 cm which is larger than the widest diameter of birth canal (obstetric conjugate=11cm) (Cunningham et al., 2016).

The diagnosis traditionally is based on digital examination during labor, although the use of ultrasound to support clinical diagnosis has been reported recently (Ghi et al., 2016).

2.AIM / OBJECTIVES

The aim of the present study is early detection of deflexed cephalic presentation by measuring occiput-spine angle, its progression and its relationship with course and outcome of labor

Study question: Are fetuses with smaller occiput-spine angle are at increased risk for operative delivery?

Study hypothesis: Fetuses with smaller occiput-spine angle are at increased risk for operative delivery.

Outcome: <u>1ry</u>: Role of occiput-spine angle measurement in determination of degree of head deflexion and its effect on progress of labor and type of delivery.

<u>2ry</u>: Role of occiput-spine angle measurement in decreasing neonatal morbidity and mortality by following the medical state of the newborn using Apgar score and NICU admission

3.METHODOLOGY:

Patients and Methods/ Subjects and Methods/ Material and Methods

- **Type of Study:** Prospective cohort Study
- * **Study Setting:** This study will be held at Ain shams Maternity hospital labor ward

Inclusion criteria: 1) Primigravida

- 2) Gestational age between 37 and 42 weeks
- 3) Singleton pregnancy
- 4) Average sized fetus (2.5-4 Kg)
- 5) Vertex presentation
- 6) Occiput-anterior or transverse position
- 7) Active phase of first stage of labor (there is progressive cervical dilatation from 4 cm, regular uterine contractions)
- 8) Spontaneous onset of labor

- Exclusion criteria: 1) Occiput-posterior position, Asynclitism (can't measure occiput-spine angle by U/S)
 - 2) Indication for cesarean section e.g. Category III CTG and placenta previa (no role for vaginal delivery)
 - 3) Medical disorder e.g. hypertension or diabetes (to avoid any maternal or fetal comorbidity and subsequent statistical bias)
 - 4) Pre labor rupture of membranes (difficult imaging in absence of amniotic fluid)
 - 5) BMI > 30 (difficult imaging due to obesity)
- **Study population:** The study will include single group of 160 cases
- **Sampling Method:** Convenient sampling
- ❖ Sample Size: using PASS 11 program for sample size calculation and assuming that incidence of operative delivery is 20%, AUC for ROC curve measuring accuracy of occiput-spine angle for prediction of operative delivery = 0.66 (Ghi et al, 2016). A sample of 160 women 80% power to detect a difference of 0.16 between AUC under the null hypothesis of 0.50 and an AUC under the alternative hypothesis of 0.66 using a two-sided z-test at as a significant level of 0.05

***** Ethical Considerations:

The study will be presented for approval from the Research ethical committee, Faculty of medicine, Ain Shams University. Informed consent will be obtained from the subjects after explaining