

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Early versus delayed enteral nutrition after gastrointestinal anastomosis in children: A Systematic Review and Meta-Analysis

Submitted for Partial Fulfillment of Master Degree in **General Surgery**

By

Barsoom Michael El-Raheb Athnasious *M.B*, *B.Ch*

Under supervision of

Dr. Osama Mahmoud Elsayed Ahmed

Professor of General Surgery Faculty of Medicine - Ain Shams University

Dr. Amr Abdelhamid AbouZeid

Professor of Pediatric Surgery Faculty of Medicine - Ain Shams University

Dr. Ramy Mikhael Nageeb

Assistant professor of General Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

I'd like to express my profound gratitude to **Dr.**Osama Mahmoud Elsayed Ahmed, Professor of General Surgery - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I would also like to express my deepest gratitude and thanks to **Dr. Amr Abdelhamid AbouZeid,** Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ramy Mikhael Mageeb**, Assistant professor of general Surgery, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to my family for their continuous support.

Last but not least, my most sincere appreciation is entitled to all the patients who participated in this study.

Barsoom Michael

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
Tist of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Intestinal Anastmosis	5
Emberyology of the Alimentary Tract	31
Surgical Anatomy & Histology	35
Physiology	50
Gastrointestinal Healing	53
Intestinal Microcirculation	76
Enteral Nutrition	80
Enhanced Recovery After Surgery (ERAS)	96
Patients and Methods	104
Results	109
Discussion	128
Summary and Conclusion	135
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Reported risk factors for anastomotic lead Constituents of the alimentary canal will blood supply and fuction	ith their
Table (3):	Factors affecting anastomotic healing	60
Table (4):	Included studies.	109
Table (5):	Study characteristics	110
Table (6):	Intervention in the study group amongst	studies111
Table (7):	Intervention in the control group studies.	•
Table (8):	Outcomes regarding efficacy: time to fir movement, time to reach full intake and of hospital stay	d length
Table (9):	Outcomes regarding safety: surgice infection, fever and anastomotic dehadausea and vomiting and abdominal dister-	iscence,
Table (10):	Demographic characteristics and diagnosis of the patients in the included s	
Table (11):	Characteristics of time to first bowel m variant	
Table (12):	Characteristics of time to full intake varia	ant118
Table (13):	Characteristics of length of hospital stay	variant119
Table (14):	Characteristics of SSI variant	120
Table (15):	Characteristics of fever variant	121
Table (16):	Characteristics of anastomotic dehiscence v	rariant122
Table (17):	Characteristics of nausea and vomiting v	ariant 123
Table (18):	Characteristics of abdominal distension v	variant 124
Table (19):	Summary of the seven studies included	125

List of Figures

ig. No.	Title	Page No.
Figure (1):	Types of anastomosis	7
Figure (2):	Valtrac TM biodegradable anastomosis rin	ng9
Figure (3):	Magnamosis technique: lap jejunojejunostomy	-
Figure (4):	The Magnamosis is one example of compression anastomosis by using endo deployed magnets in the stomach or of and colon	oscopically duodenum
Figure (5):	End- loop stoma	20
Figure (6):	Single layer seromuscular anastomosis.	27
Figure (7):	(A) Inverting anastomosis (B) anastomosis	•
Figure (8):	Parts of primitive gut	31
Figure (9):	Parts of the stomach	36
Figure (10):	Layers of gastric wall	37
Figure (11):	Blood supply of the stomach	38
Figure (12):	Overview diagram of the small intestine	41
Figure (13):	Blood supply of large intestine	44
Figure (14):	Layers of small intestine	47
Figure (15):	Layers of large intestine	49
Figure (16):	The exudative wound healing phase	55
Figure (17):	The proliferative phase of anastomotic h	nealing 57
Figure (18):	The remodeling phase of anastomotic he	ealing 58
Figure (19):	Intestinal microcirculation	78
Figure (20):	Basics of Enhanced Recovery	97
Figure (21):	PRISMA flow diagram for study selection	on 108

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (22):	Forest plot random effects model regard to first bowel movement	C
Figure (23):	Forest plot random effects model regard to reach full intake	•
Figure (24):	Forest plot random effects model length of hospital stay	0
Figure (25):	Forest plot fixed effect model regarding	SSI 120
Figure (26):	Forest plot fixed effect model regarding	fever 121
Figure (27):	Forest plot fixed effect model anastomotic dehiscence	0 0
Figure (28):	Forest plot fixed effect model regarding and vomiting	· ·
Figure (29):	Forest plot fixed effect model abdominal distension	0

List of Abbreviations

Abb.	Full term
ARM	Anorectal malformation
	Confidance interval
	Delayed enteral feeding
	Delayed enteral nutrition
	Delayed feeding
	, .
	End-to-end anastomosis
	Early enteral feeding
	Early enteral nutrition
<i>EF</i>	<i>t</i> ,
	Early nutrition
	Enhanced recovery after surgery
	End-to-side anastomosis
	Gastro-intestinal
LOS	Length of stay
<i>MD</i>	Mean difference
<i>MMC</i>	Migrating motor complex
<i>NG</i>	Na sogatsric
<i>NS</i>	Non specified
NSAIDs	Nonsteroidal anti-inflammatory drugs
OR	$Odds\ ratio$
<i>POD</i>	Postoperative day
PRISMA	Preferred reporting items for systematic
	reviews and meta-analysis
<i>RCT</i>	$ Randomised\ controlled\ trials$
SSA	Side-to-side anastomosis
<i>SSI</i>	Surgical site infection

Introduction

Procedure in pediatric surgery. This option is used to restore intestinal continuity (ileostomy or colostomy closure), resolve an inflammatory disease or functional or anatomic congenital malformation. Some aspects must be considered to perform a good anastomosis. Many factors can affect anastomosis site healing or leakage, for example intraoperative contamination, circulation of intestinal bounds, anemia, surgical technique, type of surgery (elective or emergency), tension in suture line; a meticulous effective anastomosis technique is necessary to optimize surgical outcome and minimize anastomotic complications (*Pérez et al., 2013*).

It is a common practice to avoid oral feeding in children after intestinal anastomosis surgery, even though there is little scientific evidence supporting this practice (*Mamatha and Alladi, 2015*). This is justified by the perception that the fasting would protect the anastomosis from any complication such as abdominal distention, vomiting, ileus, anastomotic dehiscence or leaks, wound infection and would allow a hermetic closure of the anastomosis before the beginning of enteral feeding (*Perez et al., 2013*).

The duration of post-operative fasting is variable but can range from 0 to 5 days depending on the operation. The ramifications of this period of fasting are not insignificant and

may include prolonged length of stay, increased use of parenteral nutrition (PN), social effects and significant costs to the health system. In neonates and infants there are additional issues with delayed feeding including cholestatic jaundice, sepsis, delayed gut development, and metabolic disease (Peng et al., 2021).

Over the past decade a significant number of studies have been published in the adult surgical literature, showing that early postoperative feeding does not increase the number of complications, but actually improves intestinal motility, and enhances the patient's recovery. Consequently, early feeding has become widely accepted practice following gastrointestinal surgery in the adult population. Relevant pediatric surgical literature to support early enteral nutrition is scarce and indicates that traditional postoperative starvation strategies remain standard practice in children. Studies in animal models also suggest that early feeding may improve wound healing and anastomotic strength and reduce morbidity from sepsis (Braungart and Siminas, 2020).

Most of the clinical research into the beneficial effects of early feeding has occurred in adult patients. In infants, there is conclusive evidence in favor of early feeding after one operation - pyloromyotomy. This has changed practice such that many centers now advocate for feeding within 4 hours, with a significant reduction in length of stay. However, evidence regarding the safety and benefits of EEN in the

recovery from other abdominal procedures in children is less common (Sullivan et al., 2016).

The concept of Enhanced Recovery after Surgery (ERAS) has increasingly been embraced by our adult surgical colleagues, but has been slow to crossover to pediatric surgical subspecialties. ERAS® improves outcomes through multiple, incremental steps that act synergistically throughout the entire surgical journey including EEN. There are increasing numbers of surgical teams exploring ERAS® in children and there is mounting evidence that this approach may improve surgical care for children across the globe. The first World Congress in Pediatric ERAS[®] in 2018 has set the stage for a new era in pediatric surgical safety (Brindle et al., 2019).

AIM OF THE WORK

The aim of this study is to determine whether early enteral nutrition following elective gastro-intestinal (GI) anastomosis surgery in children leads to improved patient outcome measures; such as time to first bowel movement, time to full intake and length of hospital stay and to assess whether this practice increases the risk of postoperative complications; such as surgical site infection, fever, anastomotic dehiscence, nausea, vomiting and abdominal distension, according to literature published in the period from 2010- 2020.