

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of Serum Markers of Iron Metabolism in Patients with chronic Liver Disease

AThesis

Submitted for partial fulfillment of Master degree in Pediatrics

 \mathfrak{B}

Eman Ali Hassan Senosy

M.B.B.Ch, Ain Shams University (2012)

Under Supervision of

Prof. Dr. Zainab Anwar El Qabany

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Asmaa Wafeeq Abdel Aziz

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Dr. Dina Aly Mohamed

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University **2021**

سورة البقرة الآية: ٣١

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Dr. Zainab Anwar El Qabany,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Asmaa Wafeeq Abdel Aziz,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work. Also, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

I Cant' forget to thank with all apppreciation **Dr. Dina Aly Mohamed,** Assistant Professor of Clinical Pathology,

Faculty of Medicine, Ain Shams University, for the efforts and time she has devoted to accomplish this work.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🗷 Eman Ali Hassan Senosy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic liver diseases in children	4
Iron metabolism	27
Iron metabolism in Chronic Liver Disease	39
Patients and Methods	52
Results	58
Discussion	67
Summary	74
Conclusion and Recommendations	77
References	78
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ABCB11 : Adenosine triphosphate binding cassette,

subfamily B, member 11

ABCB4 : Adenosine triphosphate binding cassette,

subfamily B, member 4

ABCC2 : ATP-binding cassette, subfamily C, member 2

AGS : Alagille Syndrome

AIH : Autoimmune Hepatitis

ALA : Aminolevulinic acid

ATP8B1 : Adenosine triphosphatase, type 8B, member 1

BCS: Budd-Chiari syndrome

BMP : Bone morphogenetic protein

CF : Cystic Fibrosis

CFTR : Cystic fibrosis transmembrane conductance regulator

CHF : Congenital hepatic fibrosis

CLD : Chronic liver diseases

CMV : Cytomegalovirus infection

CN : Crigler-Najjar syndrome

CPK : Creatinine phsophokinase

DJS: Dubin Johnson syndrome

DMT1 : Divalent metal transporter 1

DNA : Deoxyribonucleic acid

EBV : Epstein bar virus

ERCP : Endoscopic retrograde cholangiopancreatography

ESR : Erythrocyte sedimentation rate

Fe2+ : Divalent ferrous

Fe3+ : Trivalent ferric

FPN: Ferroprotein

Fpn1 : Ferroportin-1

GGT : Gamma glutamyl transpeptidases

GSD : Glycogen Storage Diseases

HAMP : Hepcidin Antimicrobial Peptide

HBV: Hepatitis B Virus

HCV: Hepatitis C Virus

HHC : Hereditary hemochromatosis

IBS : Inspisated Bile Syndrome

IgG: Immunoglobulin G

IL-6 : Interleukin-6

IQR : Interquartile range

IREs: Iron-responsive elements

IRP: Iron regulatory proteins

mRNAs : Messenger ribonucleic acids

MRP2 : Multidrug resistance protein 2

NPC: Niemann–Pick disease type C

NTBI : Non-transferrin bound iron

ORCH: Toxoplasma, rubella, cytomegalovirus, herpes simplex

PBC: Primary biliary cirrhosis

PC : Personal computer

PCR : Polymerase chain reaction

PFIC : Progressive familial intrahepatic cholestases

PKD : Polycystic kidney disease

PSC: Primary sclerosing cholangitis

RES : Reteiclo endothelial system

SD : Standard deviation

SNHL : Sensorineural hearing loss

SPSS : Statistical package for social science

STAT : Signal transducers and activators of transcription

TBI : Transferrin bound iron

Tf: Transferrin

TfR : Transferrin receptors

TIBC: Total iron-binding capacity

TORCH: Toxoplasmosis, Rubella, Cytomegalovirus, Herpes

simplex virus

UGT1A1 : UDP-glucuronosyl transferase 1 family, polypeptide A1

WD : Wilson's Disease

List of Tables

Table No.	. Title	Page No.
Table (1):	Causes of chronic liver diseases children	
Table (2):	Causes of neonatal and infancholestasis	
Table (3):	Investigations of chronic liver disease children	
Table (4):	Iron chelation therapy	51
Table (5):	Demographic data between control case groups.	
Table (6):	Diagnosis category and Child's-P classification among cases group	_
Table (7):	Examination among cases group	60
Table (8):	Lab investigations among cases group	p 60
Table (9):	Iron profile between control and c groups.	
Table (10):	Iron profile in relation to sex ame cases group.	
Table (11):	Iron profile between age catego among cases group.	
Table (12):	Iron profile in relation to chi classification among cases group	
Table (13):	Iron profile among cases group correlation to progression in chile Pugh classification	d's-

List of Figures

Figure N	6. Title	Page No.
	Distribution of iron in human body.	
Figure (2):	The Transferrin Cycle	31
Figure (3):	The main tissues involved in regulation of systemic iron metabo Duodenal enterocytes are respon for dietary iron absorption	lism. sible
Figure (4):	Iron Transport across the Intes Epithelium	
Figure (5):	The Transferrin Cycle	38
Figure (6):	Hepcidin regulation of FPN prexpression during changes in systimon levels	emic
Figure (7):	Regulation of hepcidin by BMP/SM inflammatory and hypoxia/ erythroposignaling in the liver	oietic
Figure (8):	Regulation of systemic iron metaboand hepcidin expression.	
Figure (9):	Fenton reaction to produce hydradicals, which can cause membrate and hepatocellular damage and hepatocellular damage carcinoma once they are in cytoplasm.	orane nage, llular the

Introduction

From is essential for most living organisms. In an unbound state, however, it is highly reactive and leads to oxidative stress (*Ganz*, 2013) Thus, iron is coupled to transferrin in serum, whereas it is stored in a ferritin-bound form in tissue (*Ganz*, 2013 & *Drakesmith*, *Prentice*, 2012). Small amounts of ferritin are load. Circulating iron constitutes a small, but highly dynamic iron transit compartment that becomes rapidly altered in disease states (*Ganz*, 2012 &. *Gkouvatsos et al.*, 2012) and increased serum iron load leads to emergence of the highly reactive non-transferrin bound iron (NTBI) (*Brissot et al.*, 2012 & *Koskenkorva-Frank et al.*, 2013).

The liver is a critical controller of iron metabolism as it represents a large iron storage compartment and a major producer of ferritin, transferrin and hepcidin (*Pietrangelo*, 2015 & Meynard et al., 2014). In chronic liver disease, low concentrations of hepcidin, which blocks the absorption of iron from the intestine and the release of iron from macrophages, (Ganz, 2012 & Pietrangelo, 2015) contribute to parenchymal iron overload, whereas increased hepcidin concentrations, as observed during chronic inflammation, lead to the sequestration of iron within macrophages thereby promoting anaemia (*Pietrangelo*, 2015 & Weiss, 2015).

As a negative acute phase protein, transferrin is down regulated during episodes of acute inflammation and in advanced liver disease (Ritchie et al., 1999 & Potter et al., 1985), whereas the acute phase protein ferritin also serves as a surrogate of hepatocellular damage (Bhagat et al., 2000). In recent years, there accumulated a lot of new data, some of them the clinical significance of contradictory, about parameters of iron metabolism as surrogate markers of siderosis and severity of liver disease (Weiss, 2015 & Potter et al., 1985). There remain open questions regarding the clinical significance of serum parameters of iron metabolism and hepcidin in various chronic liver diseases and the role of some genetic factors and environmental factors for organic liver damage during overload syndrome iron (Potter BJ, Chapman RW, Nunes, 1985).

Aim of the Work

- To describe the parameters of iron metabolism in patients with chronic liver disease
- To measure the correlation between serum parameters of iron metabolism and severity of chronic liver disease.