

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

PROM-1 (CD 133) overexpression in adult acute lymphoblastic leukemia Egyptian patients and relation to outcome

Thesis Submitted For Partial Fulfillment of Master Degree
In Internal Medicine

By

Hossam Ashraf Mohammed Mohammed

Internal Medicine MSc, Faculty of Medicine, Ain Shams University

Under Supervision of.

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Prof. Dr. Esam Abd-Elwahed Hassan

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Prof. Dr. Walaa Ali El-Salakawy

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

Dr. Rana Zakaria Abbas

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine – Ain Shams University

> Ain Shams University Faculty of Medicine 2021

سورة البقرة الآية: ٣٢

My thanks first to "Allah" who give me the ability and strength to complete this work

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Mohamed Osman Azzazi**, Professor of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University for his valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts he devoted in the supervision of this study.

I'll never forget, how co-operative was **Dr. Esam Abd-Elwahed Hassan**, Professor of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to **Dr. Walaa**Ali El-Salakawy, Professor of Internal Medicine and Clinical
Hematology, and Faculty of Medicine – Ain Shams University.
Her valuable advises and continuous support facilitated completing this work.

I would like also, to express my great thanks to **Dr. Rana Zakaria Abbas**, Professor of Internal Medicine and Clinical Hematology, and Faculty of Medicine – Ain Shams University. Her valuable advises and continuous support facilitated completing this work.

I'd like to give my wormiest appreciation to my family and my friends who always give me a great support.

I would like to thank my colleagues and everyone who made this work possible and enjoyable.

List of Contents

Subjects	Page
List of Abbreviations	
List of Tables	
List of Figures	IV
Introduction	1
Aim of the study	
Review of Literature:	
♣ Chapter (1): Acute Lymphoblastic Leukemia	
♣ Chapter (2): CD133 antigen	
Chapter (3): PROM-1 (CD 133) overexpression in adult acute lymphoblastic leukemia Egyptian patients and relation to outcome	
Patients and Methods	51
Results	
Discussion	71
Summary	80
Conclusion	
Recommendation	
References	
Arabic Summary	

List of abbreviations

ABC	ATP-binding cassette
ABCG2	ATP-binding cassette, sub-family G, member 2
ADAM	a disitegrin and metalloprotease
ADCs	availability of the antibody-drug conjugate
AHD	antecedent hematologic disorder
ALL	acute lymphoblastic leukemias
AML	acute myeloid leukemia
BAD	B cell leukaemia /lymphoma-associated factor 2-antagonist
	of cell death
B-ALL	B-cell lymphoblastic leukemia/lymphoma
Bcl-XL	B cell leukaemia associated protein 2 (Bcl-2), Bcl2-X-like
BCRP1	breast cancer resistance protein1
bHLH	basic helix—loop—helix
CALGB	Cancer and Leukemia Group B
CARs	Chimeric antigen receptors
CARTs	CAR T-cells
CEBPE	
CK1A	
CLP	common lymphoid progenitors
CMP	
CNS	central nervous system
CR	complete remission
CSCs	cancer stem cells
CSL	
DIC	Disseminated intravascular coagulation
DIFs	differentiation-inducing factors
EFS	event-free survival
FLIP	FLICE-like inhibitory protein
GLI	glioma-associated oncogene homolog
GSK-3β	glycogen-synthase kinase 3β
H3K79	histone H3 lysine-79
HES	hairy and enhancer of split
HLA	
HSC	hematopoietic stem cells
HSPCs	hematopoietic stem and progenitor cells
IAP	inhibitors of apoptosis protein
ICN	intracellular Notch
KEEs	

LEFs	lymphocyte enhance factors
LHPP	
LMPP	lymphoid-primed multipotent progenitors
MDR	multidrug resistance
MDS	myelodysplastic syndrome
MLL	Mixed Lineage Leukemia
MLL-FPs	MLL-AF4 and other MLL fusion proteins
MLLr	MLL-rearranged
MMP	
MMTV	
MPP	multipotent progenitors
MRD	
mTOR	mammalian target of rapamycin
NE	Neuroepithelial
Ngn 1	neurogenin 1
OS	overall survival
PDKs	phosphatidyl inositol-dependent kinases
PIP3	phosphatidylinositol3-phosphate
PPARγ	Peroxisome Proliferator-activated receptor γ
PROM1	
PTEN	phosphatase and tensin homolog
SEER	Surveillance, Epidemiology and End Results
SHH	Sonic HH
SNP	single-nucleotide polymorphism
STAT	signal transducer and activator of transcription
STGD	Stargardt
SUFU	suppressor of fused homolog
T-ALL	T-cell lymphoblastic leukemia/lymphoma
TCFs	T-cell factors
TRAIL	TNF-α-related apoptosis inducing ligand
VEGF-A	vascular endothelial growth factor-A
WBC	White blood cell

∠ist of tables

List	Review	Page
Table (1):	Effect of Chromosome Number on Prognosis	13
List	Results	Page
Table (1):	Comparison between studied groups as regard Demographic data	60
Table (2):	Distribution of studied cases as regard Clinical data	61
Table (3):	Comparison between studied groups as regard CBC	62
Table (4):	Comparison between studied groups as regard Liver and kidney function tests	66
Table (5):	Comparison between studied groups as regard viral screening tests	67
Table (6):	Distribution of studied cases as regard CD133	68
Table (7):	Distribution of studied cases as regard outcome	69
Table (8):	Relation between CD133 and outcome	70

List of figures

List	Review	Page
Figure (1)	Topological model of Prominin-1/CD133	20
Figure (2)	The involvement of Wnt/β-catenin signalling pathway in neurogenesisv	23
Figure (3)	The role of CD133 in disc morphogenesis in the photoreceptor	25
Figure (4)	(A) Membrane topology of CD133 antigen and (B) structural properties of human Prominin-1	29
Figure (5)	Bone marrow aspiration needle inserted into the iliac crest at an angle perpendicular to the bony prominence	54
Figure (6)	Aspiration of bone marrow into a syringe	54
Figure (7)	Bony spicules in the aspirate confirm the presence of bone marrow	55
List	Results	Page
Figure (1)	Distribution of studied cases as regard Clinical data	61
Figure (2)	Comparison between studied groups as regard Hb	63
Figure (3)	Comparison between studied groups as regard WBCs	63
Figure (4)	Comparison between studied groups as regard Plts	64
Figure (5)	Comparison between studied groups as regard Peripheral blasts	64
Figure (6)	Comparison between studied groups as regard ESR	65
Figure (7)	Distribution of studied cases as regard CD133	68
Figure (8)	Distribution of studied cases as regard outcome	69
Figure (9)	Relation between CD133 and outcome	70

ABSTRACT

Background; Cancer stem cells are the cancer cells that have abilities to self-renew, differentiate into defined progenies, and initiate and maintain tumor growth. Among the reported makers of the cancer stem cells, CD133 is the most well-known marker for isolating and studying cancer stem cells in different types of cancer. The CD133high population of cancer cells are not only capable of self-renewal, proliferation, but also highly metastatic and resistant to therapy, Aim and objectives; to know about PROM-1 (CD 133) overexpression in adult acute lymphoblastic leukemia Egyptian patients and relation to outcome, Subjects and methods; This is a Prospective study, was conducted at Ain Shams university hospitals. Internal medicine department, Clinical hematology and stem cell transplantation unit, on 47 adult patients with Acute Lymphocytic Leukemia, over aperiod of Six months, Result; there were 26 (81.2%) with fever, 10 (31.2%) with Bleeding tendency, 26 (81.2%) with Lymph node, 17 (53.1%) with Hepatosplenomegaly, 9 (28.1%) with Mediastinal mass and 17 (53.1%) with Bone pain, Conclusion; Prominin 1 positive expression is a helpful prognostic marker in patients with ALL. Prominin 1 should be routinely assessed at diagnosis in ALL patients for better prognostic assessment and should be taken in consideration in designing future therapeutic strategies based on patient specific risk factors, Keywords; Cancer stem cells, CD133, PROM1.

INTRODUCTION

CD133, encoded by the *PROM1* gene, is a pentaspan transmembrane glycoprotein of great potential value as a pan-cancer target as it is commonly associated with cancer stem cells in multiple different tumor types, including leukemia .Proof-of-principle studies have shown that targeting CD133 can be used to deliver nanoparticles to gastric stem cells ,or for chimeric antigen receptor T cell therapy in acute lymphoblastic leukemias (ALL) caused by rearrangements of the *Mixed Lineage Leukemia* (*MLL*) gene (**Liou GY.2019**).

Despite vast improvements in treatment for ALL, *MLL* gene rearrangements (MLLr) still cause very poor prognosis ALLs. The most common MLL rearrangement is the t(4;11) (q21;q23) chromosome translocation that fuses MLL in frame with the AF4 gene producing MLL-AF4 and AF4-MLL fusion protein. MLL-AF4 and other MLL fusion proteins (MLL-FPs) bind to gene targets and cause inappropriate gene activation through multiple transcription elongation and epigenetic mechanisms, including recruitment of the histone H3 lysine-79 (H3K79) methyltransferase DOT1L. In addition to a role in transcription elongation, recent work has shown that H3K79me2/3 has an important role at a subset of enhancers (H3K79me2/3-marked enhancer elements (KEEs)), increasing expression of key gene targets through the maintenance of enhancer–promoter interactions (**J Clin Oncol. 2019**).

According to Tolba et al, study which showed that CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemia patients with higher resistance to standard chemotherapy and relapse (**Tolba et al., 2013**).

One of the most attractive features of *PROM1*/CD133 as a potential therapeutic target derives from the recognition that the gene is a direct target of MLL-AF4 regulation, suggesting that in MLLr leukemias *PROM1*/CD133 expression is tightly linked to the activity of the fusion protein itself. However, the exact details of how this locus is regulated by MLL-AF4 are unclear, and whether and how *PROM1*/CD133 contribute to MLLr leukemic growth is unknown. Understanding these mechanisms is likely to be key to the future development of *PROM1*/CD133-directed therapeutic targeting in these leukemias. (Godfrey L.2019).

AIM OF THE WORK

The aim of the present study is to know about PROM-1 (CD 133) overexpression in adult acute lymphoblastic leukemia Egyptian patients and relation to outcome.