

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

STUDY OF RELATIONSHIP BETWEEN STOOL LACTOBACILLUS ACIDOPHILUS AND GRAVE'S DISEASE IN A SAMPLE OF EGYPTIAN POPULATION

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

 $\mathcal{B}y$

Aya Madboly Helmy

MBBCh, Faculty of Medicine, Ain Shams University, 2015

Under supervision of

Prof. Inas Mohammed Sabry

Professor of Internal Medicine & Endocrinology

Faculty of Medicine, Ain Shams University

Dr. Laila Mahmoud Ali Hendawy

Assistant Professor of Internal Medicine & Endocrinology

Faculty of Medicine, Ain Shams University

Dr. Hanan Mahmoud Ali

Lecturer of Internal Medicine & Endocrinology
Faculty of Medicine, Ain Shams University

Faculty of Medicine

Ain Shams University

Cairo, Egypt, 2021

سورة البقرة الآية: ٣٢

ACKNOWLEDGMENT

First and foremost, I always feel indebted to AUAH, the Most Kind and Most Merciful.

I would like to express my respectful thanks and profound gratitude to **Prof. Inas Mohammed Sabry,** Professor of Internal Medicine & Endocrinology, Faculty of Medicine — Ain Shams University, for her keen guidance, kind supervision, valuable advice, and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Laila Mahmoud Ali Hendawy,** Assistant Professor of Internal Medicine

& Endocrinology, Faculty of Medicine – Ain Shams
University, for her kind care, continuous supervision, valuable instructions, constant help, and great assistance throughout this work.

I would also like to make a special dedication to **Dr. Hanan Mahmoud Ali,** Lecturer of Internal Medicine & Endocrinology, Faculty of Medicine – Ain Shams University, who inspired me to this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Finally, my sincere thanks and appreciation to all patients and their parents who agreed to participate in this study.

Aya Madboly Helmy

LIST OF CONTENTS

Title Page No.
List of Abbreviations i
List of Figures and Tables in Review ii
List of Tables iii
List of Figures in Resultsiv
Introduction 1
Aim of the Work
Review of Literature 4
Chapter 1 Graves' Disease 4
Chapter 2 Lactobacillus Acidophilus 38
Chapter 3 Relationship between Stool Lactobacillus Acidophilus and Graves" Disease
Subjects and Methods
Results
Discussion
Summary
References
Arabic Summary

LIST OF ABBREVIATIONS

Abb.	Full Term
BMI	body mass index
CTLA4associated antigen 4	cytotoxic T-lymphocyte
EMP	Embden Meyerhof Parnas
IQR	interquartile range
LAB	lactic acid bacteria
MMI	methimazole
PCR	polymerase chain reaction
PTU	propylthiouracil
RAI	radioactive iodine
T3	triiodothyronine
T4	thyroxine
TNF	tumor necrosis factor
TPO	thyroid peroxidase
TSH	thyroid stimulating hormone

i

LIST OF FIGURES AND TABLES

Figure/Table No.	Title	Page No.
Figure (1): Pathophy disease	ysiologic mech	anisms of Graves"
		10
Figure (2): Images of disease	•	
Figure (3): Radionuclio	de thyroid scintig	graphy 21
Figure (4): Thyroid Graves' disease	• • •	-
Figure (5): Treatment a	algorithm for Gra	aves' disease 31
Figure (6): Probiotics I	Lactobacillus Ac	idophilus54
Figure (7): The composition by exogenous and endo	•	
Figure (8): Anterior ap	proach for thyro	id examination63
Figure(9): Posterior ap	proach for thyro	id examination64
Figure(10): Qiagen DN	NA extraction kit	s65
Table (1): Components	s of Graves' disea	ase: prevalence 11
Table (2): Unusual pre	sentations of Gra	aves' disease 14

LIST OF TABLES IN RESULTS

Table No.	Title	Pag	ge No.
Table (1): Compar according to demo			•
Table (2): Comparaccording to exam			0 1
Table (3): Compar	ison between the	different stud	lied groups
according to exam	ination		70
Table (4): Comparaccording to labora			0 1
Table (5): Compar according to Po	CR at which	lactobacilli	expressed
Table (6): Compar according to ultras	ison between the	different stud	lied groups

LIST OF FIGURES IN RESULTS

Figure No.	r	Title	Page No.				
Figure (1): Co according to ag						and	2
Figure (2): Co according to se						and	2
Figure (3): Co according to ey	_					and	2
Figure (4): Co according to sk						and	2
Figure (5): Co according to ne	-		•			and	2
Figure (6): Co according to we	-		•			and	2
Figure (7): Co according to an						and	2
Figure (8): Co according to sto						and	2
Figure (9): Co according to expressed	to PCR	at					
Figure (10): C according to	-		-				
Figure (11): C according to the						and	2

INTRODUCTION

INTRODUCTION

Graves' disease is an autoimmune disorder in which the thyroid is activated by antibodies to the thyrotropin receptor. The hyperthyroidism that develops is one of many somatic and psychiatric manifestations of the disease that can affect the quality and length of life. (**Terry et al., 2016**)

The annual incidence of the disease is about 20 to 50 cases per 100,000 persons. The incidence peaks between 30 and 50 years of age, but people can be affected at any age. The lifetime risk is 3% for women and 0.5% for men. (Zimmermann et al., 2015)

Unambiguous identification of the factors underlying Graves' disease has not yet been accomplished. Genetic and epigenetic determinants are leading candidates for these factors. Large-scale genetic analyses have identified several genes conferring susceptibility. These include genes encoding thyroglobulin, thyrotropin receptor, HLA-DRβ-Arg74, the protein tyrosine phosphatase nonreceptor type 22 (PTPN22), cytotoxic T-lymphocyte—associated antigen 4 (CTLA4), CD25, and CD40. (Limbach et al., 2016)

Gut microbiota are trillions of bacterial strains per gram faeces. Their genome, also known as the microbiome,

1

contains a 100-fold greater number of genes than the human genome. (Qin et al., 2010)

Majority of which are obligate anaerobes. Every study reporting the human gut microbiota underlined its uniqueness as highly inter-individual specific. (**Arumugam** et al., 2011)

The intestinal microbiota play a key function in metabolism, absorption, immune functioning along with defense mechanism against pathogen. (**Kamada et al., 2013**) (Walsh et al., 2014)

The regulation of gut microbiota configuration has been compromised in a variety of disorders like inflammatory bowel disease, Crohn's disease, colitis, type II diabetes, Hashimoto's thyroiditis, and asthma. (**Ishaq et al., 2018**)