

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Association between Polycystic Ovary Syndrome and Elevated Serum Periostin Levels

AThesis

Submitted for partial fulfillment of Master degree in Obstetrics & Gynecology

By

Nourhan Ahmed Mahmoud Ismail

M.B.B.ch, Faculty of Medicine, Ain Shams University, 2014 Obstetrics and Gynaecology Resident, Mit Ghamr Hospital, Ministry of Health

Under Supervision of

Prof. Dr. Hazem Fadel El Shahawy

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Haitham Fathy Mohammed Gad El Karem

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Walaa Ahmed Yousry Kabiel

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Dr. Hazem Fadel El Shahawy**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Haitham Fathy Mohammed Gad El Karem,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Walaa Ahmed Yousry Kabiel,** Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams
University, for guiding me throughout this work and for granting me much of her time. I greatly appreciate her efforts.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Mourhan Ahmed Mahmoud Ismail

List of Contents

Subject Pa	ıge No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Protocol	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Polycystic ovarian syndrome (PCOS)	5
Clinical Importance of Periostin in Obstetrics and Gynecology	31
Subjects and Methods	48
Results	55
Discussion	71
Conclusion and Recommendations	76
Summary	77
References	79
Arabic Summary	

List of Abbreviations

AE-PCOS: Androgen excess and polycystic ovary

Full-term

Society syndrome society

Abbr.

AES : Androgen Excess Society

AFC : Antral follicle count

AMH : Anti mullerian hormone

ASNs : Androgen- secreting neoplasms

BMI : Body mass index

BMP : Bone morphogenetic protein CAH : Congenital adrenal hyperplasia

CYP11A : Cytochrome P450 side-chain cleavage enzyme

CYP17 : Cytochrome P450 17-hydroxylase/17CYP21 : Cytochrome P450 21-hydroxylase

DBP : Diastolic blood pressureECM : Extracellular matrix

EEC : Endometrial epithelial cells

ELISA : Enzyme Linked Immune Sorbent Assay

EMT : Epithelial-mesenchymal transition

ESC : Endometrial stromal cells

FAI : Free androgen index
FAK : Focal adhesion kinase
FBG : Fasting blood glucose

FNPO : Follicle number per ovary
 FSH : Follicle-stimulating hormone
 FUN : Uterine fundal myometrium

GH : Growth hormone

HDL-C: High density lipoprotein-Cholesterol

HOMA-IR: Homeostasis model assessment of insulin

resistance

hs-CRP: High-sensitive C reactive protein

IGF-1 : Insulin-like growth factor 1IGT : Impaired glucose tolerance

IH : Idiopathic hirsutism
IHC : Immunohistochemical
IQR : Interquartile range

ISI : Insulin sensitivity index

iTRAQ : Isobaric tagged-based quantitative mass

spectrometry

LAP : Lipid accumulation index

LDL-C: Low density lipoprotein-Cholesterol

LH : Luteinizing hormoneLPA : Lysophosphatidic acidLUS : Lower uterine segment

NC-CAH: Non classical congenital adrenal hyperplasia

NIH : National Institutes of Health

OC : Ovarian cancer

OGTT : Oral glucose tolerance test

OS : Overall survival OV : Ovarian volume

PCOmPolycystic ovarian morphologyPCOSPolycystic ovary syndrome

Periostin: Postin

PFS : Progression-free survivalSBP : Systolic blood pressure

SHBGsex hormone-binding globulinSHBGSex hormone-binding globulin

SPSS Statistical package for Social Science

TCF21 : transcription factor 21

TGWBWestern blottingWHRWaist to hip ratio

List of Tables

Table No.	Title 9	Page No.
Table (1):	Criteria for diagnosis of PCO	14
Table (2):	Standard reagent preparation	52
Table (3):	Comparison of the demograp characteristics of the subjects	
Table (4):	Comparison of the laborat characteristics of the subjects	•
Table (5):	Relationships between serum perior levels and metabolic parameters	
Table (6):	Multivariate regression analysis	67
Table (7):	Evaluation of the effects of FSH, I estradiol, TG, BMI, WHR, period using the multiple linear regress analysis	stin ion
Table (8):	ROC curve analysis of periostin a predictor of PCO	

List of Figures

Figure No	. Title Page No	9.
Figure (1):	Hormonal interactions in the early follicular phase	1
Figure (2):	Trans vaginal ultrasound scan of polycystic ovary	3
Figure (3):	Schematic representation of the change in emphasis from early age reproductive disorders to long-term metabolic and cardiovascular health	4
Figure (4):	Hirsutism1	6
Figure (5):	Acne vulgaris 1	7
Figure (6):	Polycystic ovary2	3
Figure (7):	Management of polycystic ovary syndrome	8
Figure (8):	Age of studied groups5	7
Figure (9):	Weight of studied groups5	7
Figure (10):	BMI of studied groups5	8
Figure (11):	Serum glucose levels of studied groups 6	0
Figure (12):	Serum periostin levels of studied groups 6	0
Figure (13):	Serum triglyceride levels of studied groups 6	51
Figure (14):	Serum uric acid levels of studied groups 6	51
Figure (15):	WHR of studied groups6	2
Figure (16):	Relationships between serum periostin levels and TG	4

Figure (17):	Relationships between serum periostin levels and uric acid.	64
Figure (18):	Relationships between serum periostin levels and BMI.	65
Figure (19):	Relationships between serum periostin levels and WHR.	65
Figure (20):	Relationships between serum periostin levels and SBP.	66
Figure (21):	ROC curve analysis of periostin as a predictor of PCO	70

Abstract

Background: Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive aged women and it is the most common cause of anovulatory infertility. The diagnosis of PCOS in women is usually done according to the ESRHE/ASRM criteria known as Rotterdam criteria. Periostin is a 90-kilodalton secretory protein originally identified as an osteoblast-specific factor and functions as a cell adhesion molecule. PCOS is associated with elevated levels of periostin but it was not clear whether increased periostin levels are primary activators or they simply resulted from the disorder.

Aim of the work: The aim of the study was to assess the periostin levels in patients with PCOS to measure the ability of this factor for diagnosis of the syndrome.

Subjects and Methods: This Cross sectional study included 40 patients suspected to have PCOS according to the ESRHE/ASRM criteria known as Rotterdam. Ultrasound investigation was done and total cholesterol, high density lipoprotein-Cholesterol (HDL-C), low density lipoprotein (LDL-C), FSH, LH, estradiol, uric acid, oral glucose tolerance test (OGTT) and serum periostin levels were investigated by using ELISA technique.

Results: PCO patients had higher levels of triglycerides, uric acid and periostin levels compared to non PCO group.

Conclusion: Polycystic ovary syndrome is associated with elevated serum periostin levels.

Key words: Periostin, ELISA, PCOS.

Introduction

disorder and different genetic, hormonal, and environmental etiology can contribute to its pathology (**De Leo et al., 2016**). Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive aged women, with a prevalence of between 8% and 13% depending on the population studied and definitions used. PCOS is a complex disease with reproductive, metabolic and psychological features. Infertility is a prevalent presenting feature of PCOS with ~75% of these women suffering infertility due to anovulation, making PCOS by far the most common cause of anovulatory infertility (**Costello et al., 2019**).

The diagnosis of PCOS in women is usually done according to the ESRHE/ASRM criteria known as Rotterdam criteria, which is based on having at least two of three characteristics of oligo-ovulation/anovulation, hyperandrogenism and polycyclic ovaries using ultrasonographic images. According to Androgen Excess Society (AES) criteria, clinical or biochemical diagnosis of hyperandrogenism is required simultaneously with an oligo-ovulation/anovulation, or ultrasound images of polycyclic ovaries (Shaaban et al., 2019).

Polycystic ovary syndrome (PCOS) is a heterogeneous entity and is characterized not only by reproductive disturbances, such as anovulatory infertility and pregnancy complications but also by increased risk of disorders of glucose metabolism and increased markers of cardiovascular morbidity. Hyperandrogenism and insulin resistance are characteristic features of the syndrome, and compensatory hyperinsulinaemia, that accompanies insulin resistance, augments androgen production (Ollila et al., 2017).

Periostin is a 90-kilodalton secretory protein originally identified as an osteoblast-specific factor that is preferentially expressed in the periosteum and functions as a cell adhesion molecule (**Liu et al., 2017**).

The ability of periostin to interact with extracellular matrix (ECM) components and cell-surface receptors renders the protein capable to modulate both the biomechanical properties of connective tissues and the cell-matrix interactions, thus regulating important processes like cell adhesion, migration, proliferation, and differentiation (**Prakoura and Chatziantoniou**, 2017).

Periostin performs an important function in numerous biological processes, including bone development, maturation and remodeling, cardiovascular differentiation, cutaneous and connective tissue remodeling, as well as in allergic diseases, respiratory diseases and various inflammatory conditions (Kang et al., 2019).