

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Biochemical evaluation of fungi-degraded date pits as a feed ingredient for *Liza ramada* fingerlings

A thesis
Submitted for the award of the degree of Ph.D in Biochemistry
By

Basma Hassan Ahmed El-Sayed Moustafa

(M.Sc. Biochemistry 2011) Faculty of science-Alexandria University

Under Supervision of

Prof. Dr. Fatma Farag Abdel Hamid

Professor of Biochemistry
Department of Biochemistry
Faculty of Science
Ain Shams University

Dr. Doaa Mohamed Ibrahim

Assistant prof. of Biochemistry
Department of Biochemistry
Faculty of Science
Ain Shams University

Prof. Dr. Hanaa El-Din Ismail Assem

Prof. Emeritus of fish physiology Department of Fish physiology National Institute of Oceanography and Fisheries

Dr. Samar Samir Mohamed

Assistant prof. of Microbiology
Department of Microbiology
Faculty of Science
Ain Shams University

Biochemistry department Faculty of Science Ain Shams University 2021

Declaration

I declare that this thesis is my own work and that, it contains no material previously published or produced by another party in fulfillment, partial or otherwise, of any other degree or diploma at another university or institute of higher learning.

Basma Hassan Ahmed Moustafa

Dedication

To my husband Mohamed Morsy and my friends for their love, encouragement, help and prayers that made studies possible and to them i owe everything.

Basma Hassan Ahmed Moustafa

Bíography

Name: Basma Hassan Ahmed El-Sayed Moustafa

Scientific Degree: M.Sc. in Biochemistry.

Department: Biochemistry.

Faculty: science.

University: Alexandria

Graduation date: 2005

Master degree in: 2011

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost cordial thanks to Allah.

No words could express my sincere appreciation and deepest thanks to **Prof. Dr., Fatma Farag Abdel Hamid,** Professor of Biochemistry, Faculty of Science, Ain Shams University, for her endless help, motherly attitude, close supervision, creative thinking, valuable suggestions and constant advice throughout this work.

I am deeply indebted to **Prof. Dr. Hanaa El Din Assem,** Professor of Physiology National Institute of Oceanography and Fisheries, for his practical guidance, kind help, tremendous concern, care and invaluable assistance.

I wish to express my thanks to **Dr. Doaa Mohamed Ibrahim,** assistant prof. of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for her instructive guidance, revision of every detail, as well as profound reading of the manuscript. Also I wish to express my thanks to **Dr. Samar Samir Mohamed**, assistant prof of Microbiology, Department of Microbiology, Faculty of Science, Ain Shams University for her instructive guidance, revision of every detail, as well as profound reading of the manuscript.

I also wish to express my thanks to Dr. Iman El- Saidy, Dr. Magda Afify, Dr. Azza Khalifa, Lecturer of Physiology National Institute of Oceanography and Fisheries, for their kind help, tremendous concern. My deep thanks and regards to the staff members of the Biochemistry Department, Faculty of Science, Ain Shams University and physicians of Endocrinology Unit, Ain Shams University Hospitals for their support and help. Last but not least, I would like to thank all my colleagues,

Abstract

This study aimed to perform a comparison between date pits (DP) and Trichoderma. reesei fermented (fungi fermented) date pits (FDP) as a dietary component, to use it as a cheaper high-energy feed ingredient to increase the growth rate, and to determine the probiotic possibility of FDP supplementation for fingerlings *Liza ramada*. Diets contained different concentrations of date pit (DP), and fermented DP diets (FDP) as a replacement for dietary corn, were used to feed *Liza ramada* fingerlings (0.65 g initial weight) for 6 weeks. The specific growth rate remained unchanged at a concentration of 5% with DP, then, it was decreased by increasing the concentration of DP. A highly significant increase in growth rate was detected by increasing the concentration of FDP (p <0.001), reaching its maximum at 450 gkg⁻¹. Hemoglobin depletion occurred comparing to the control during the DP feeding, whereas, it was inclined with increasing the FDP concentrations. Serum glucose levels showed no significant change during feeding with DP but it was increased during FDP feeding. Serum triglycerides of fish fed with FDP was highly increased, that explained the increase in muscle lipid. Serum cholesterol levels were decreased in fish fed with DP, while increased with that fed FDP. It worth mentioning that no previous studies were examining pathogen resistance of cultured *Liza ramada* associated with DP and FDP supplementation in a diet. This study enhanced the necessity to use FDP in diets to support fish health and to improve the biochemical parameters of fish, also to lessen the intestinal harmful bacteria (*Salmonella spp.*, *Campylobacter spp.*, *Shigella spp.* and *E. coli*) count, and increase growth rates.

List of Contents

List of tables	i
List of figures	ii
List of abbreviations	iii
Introduction	vi
Aim of the Work	vii
Review of Literature	1
1. Liza ramada	1
1.1. Habitat and biology:	2
2. Date pits	5
3. Trichoderma reesei	8
4. Dietary supplementation of date pit and Fermented date pit	13
5. Intestinal bacteria	15
Materials and Methods	17
I.Materials	17
I.1. Preparation of grey mullet fish	17
I.2. Preparation of fungus culture and process of fermentation	17
Fungal culture	18
I.3. Diet composition	19
I.4. Growth parameters	21
I.5. Experimental design	22
I.6. Culture system	23
I.7. Sample collection: blood and tissue samples	24
II.Methods	24
II.1. Biochemical analysis	24
II.1.1. Determination of blood hemoglobin	24
II.1.2. Measurements of blood glucose	26
II.1.3. Measurements of serum total cholesterol	28
II.1.4. Measurements of serum triglyceride	30
II.1.5. Measurements of muscle total protein	31
II.1.6. Measurements of muscle total lipid	33
II.1.7. Muscle water content	34
II.1.8. Muscle ash content	34
II.2. Intestinal bacterial count	35

II.3. Statistical analysis	36
Results	37
Discussion	54
Conclusion	63
Summary	65
Recommendations	68
References	69
Arabic Summary	89
Arabic Abstract	93

List of Tables

Table No.	Title	page
1	Analysis of date pits on dry weight basis	7
2	Composition and proximate analyses of the test diets	20
3	Growth performance during feeding with dietary unfermented date pit	37
4	Growth performance during feeding with dietary fermented date pit	39
5	Fish proximate analysis of <i>Liza ramada</i> fingerling fed with unfermented date pits	45
6	Fish proximate analysis of <i>Liza ramada</i> fingerling fed with fermented date pits	46
7	Biochemical parameters of <i>Liza ramada</i> during feeding with dietary date pit	48
8	Biochemical parameters of <i>Liza ramada</i> during feeding with dietary fermented date pit	49
9	Microbial population densities in \log_{10} colony-forming units (CFU) per g dry fish intestine tissue for total bacterial counts (TBC).	52

List of Figures

Fig. No.	Title	page
1	Thin lip grey mullet, Liza ramada	1
2	World istribution map of different mugilidae fish species Liza ramada	5
3	Trichoderma reesei	8
4	Electron micrograph scanning of typical transversal section of date pits (a) before fermentation with <i>T. ressei</i> DPSF, (b) after fermentation with <i>T. ressei</i> .	11
5	Electron micrograph scanning of typical longitudinal section of date pits a) before fermentation with <i>T. ressei</i> DPSF, (b) after fermentation with <i>T. ressei</i> .	12
6	Growth rate of fish during feeding with dietary unfermented date pit	36
7	Growth rate of fish during feeding with dietary fermented date pit.	38