

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Quantitative assessment of MRI lesion load in cerebral Multiple Sclerosis: A comparison of conventional sequences and Double Inversion Recovery

Thesis

Submitted for Partial Fulfilment of Master Degree in Radiodiagnosis

M.B.B.Ch. Ain Shams University

Under supervision of

Prof. Dr. Ahmed Fathy Abdel-Ghani Al-Asmar

Professor of Radiology
Faculty of Medicine, Ain Shams University

Dr. Suzan Farouk Ibrahim Salib

Lecturer of Radiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AllAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Fathy Abdel-Ghani Al-Asmar**, Professor of Radiology, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Suzan Farouk Ibrahim Salib**, Lecturer of Radiology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Bassant Tarek

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy of the Brain	4
Pathology of MS	23
Physical Principles of Magnetic Resonance Ima	aging34
Patients and Methods	43
Results	47
Illustrative Cases	54
Discussion	62
Summary and Conclusion	65
References	67
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACA	Anterior Cerebral artery
	Anterior Choroidal artery
	Anterior Inferior Cerebellar Artery
	Blood–brain barrier
	Body mass index
	Clinically isolated syndrome
	Central nervous system
	Conventional spin echo
	Double Inversion Recovery
DWM	Deep White Matter
	Epstein Bar Virus
FLAIR	Fluid-Attenuated Inversion Recovery
GM	
HLA	Human leukocyte antigen
ICA	Internal Carotid Artery
IR	Inversion Recovery
MCA	Middle Cerebral Artery
MRI	Magnetic Resonance Imaging
MS	Multiple sclerosis
NAWM	Normal appearing White Matter
NMR	Nuclear magnetic resonance
NMV	Net magnetization vector
PCA	Posterior Cerebral Artery
PICA	Posterior Inferior Cerebellar Artery
PPMS	Primary progressive multiple sclerosis
RIS	Radiologically isolated syndrome
RRMS	Relapsing Remitting Multiple Sclerosis
SCA	Superior Cerebellar Artery
SE	Spin Echo

List of Abbreviations Cont...

Abb.	Full term
SPMS	Secondary progressive multiple sclerosis
STIR	Short-TI Inversion Recovery
T1WI	T1-weighted images
T2 TSE	Turbo spin-echo
T2WI	T2-weighted images
TCRs	T- Cell Receptors
TE	Time to Echo
TI	Inversion Time
TR	Repetition Time
WM	White Matter

List of Tables

Table No.	Title	Page No.
Table (1):	Eliciting the signal intensities of tissue on T1WI and T2WI	
Table (2):	Demographic data for the study group.	47
Table (3):	Total lesion load for the study group	48
Table (4):	Cortical affection for the study group	49
Table (5):	Juxta and subcortical affection for group.	v
Table (6):	DWM affection for study group	51
Table (7):	Infratentorial affection for the study gr	roup52
Table (8):	Comparison of number of lesions debetween DIR versus T2 and DIR FLAIR for study group.	versus

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Diagram showing the boundaries betw	
Fig. (2):	Diagram depicting the lateral and aspects of the different lobes of the brain	
Fig. (3):	Diagram showing the different types of matter tracts in the coronal view	
Fig. (4):	Diagram showing the ventricular systhe sagittal view	
Fig. (5):	Diagrammatic representation of brain and associated cranial nerves	
Fig. (6):	Diagrammatic representation of cerebellum and its connections brainstem	to the
Fig. (7):	Mid sagittal diagram showing brain cis	sterns17
Fig. (8):	The image showing the three major coartery territories	
Fig. (9):	Normal Anatomy of the cerebral system	
Fig. (10):	Diagram of 4 axial slices depicting venous drainage patterns of the dareas of the brain	lifferent
Fig. (11):	Axial T2WI of the brain at the level basal ganglia	
Fig. (12):	Coronal T2WI image of the brain takes level of the basilar artery	
Fig. (13):	Annotated mid-sagittal T2WI of the showing both supra and infrat structures	entorial

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (14):	Protons possess a positive charge constantly spinning around their over This generates a magnetic field protons similar to bar magnets	vn axes. making
Fig. (15):	Conventional (single echo) SE pulse se	equence36
Fig. (16):	Repetition time (TR) and T1-weighting	g37
Fig. (17):	Echo time (TE) and T2-weighting	38
Fig. (18):	Comparison of Spin Echo (SE) and I Recovery (IR)	
Fig. (19):	Selective nulling of tissue signal by TI	
Fig. (20):	Schematic of the FLAIR (a) and DIR sequences along with plots of the evo steady-state longitudinal magnetizat evolution over time (t)	lution of ion (Mz)
Fig. (21):	Demyelinating lesions in (A) T2, (B and (C) DIR respectively	
Fig. (22):	Total lesion load DIR Vs T2 and FLAIR.	
Fig. (23):	Cortical lesions DIR Vs T2 and FLAIR.	
Fig. (24):	Juxta and subcortical lesions DIR Vs DIR Vs FLAIR	
Fig. (25):	DWM lesions DIR Vs T2 and DIR Vs I	FLAIR51
Fig. (26):	Infratentorial lesions DIR Vs T2 and FLAIR.	
Fig. (27):	Case (1)	54
Fig. (28):	Case (2)	56
Fig. (29):	Case (3)	58

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (30):	Case (4)	59
_	Case (5)	
Fig. (32):	Case (6)	61

Introduction

Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system (CNS), that is characterized by focal demyelinating plaques and diffuse neurodegeneration, resulting in both physical and neurocognitive disability (*Vural et al.*, *2013*).

Although MS has been known as a white matter disease, MS lesions occur in all CNS parenchymal areas, including cerebral cortex and deep grey matter.

Approximately two million people worldwide are affected by this disorder, and it is the most common non-traumatic neurological disability affecting young adults (*Manogaran et al.*, 2016).

Multiple Sclerosis (MS) is diagnosed according to the McDonald criteria which are clinical, radiographic and laboratory criteria. They were originally introduced in 2001 and revised multiple times, most recently in 2017. The McDonald Criteria have resulted in earlier diagnosis of MS with a high degree of both specificity and sensitivity, allowing for better counseling of patients and earlier treatment (*Thompson et al.*, 2017).

Magnetic resonance imaging (MRI) has played a very important role in elucidating the pathophysiology, diagnosis and treatment of MS. According to the McDonald criteria for MS, the diagnosis requires objective evidence of lesions disseminated in time and space. As a consequence there is an

important role for MRI in the diagnosis of MS, since MRI can show multiple lesions (dissemination in space), some of which can be clinically occult, and MRI can show new lesions on follow up scans (dissemination in time) (Vural et al., 2013).

The FLAIR sequence is a sequence that suppresses the signal of cerebrospinal fluid (CSF) with a reverse cycle (inversion recovery) pulse and a high time Echo (TE values increase) T2- weight. This sequence increases the contrast of supratentorial lesions, in particular lesions that arise in juxtaposition to the CSF but is less sensitive in the posterior fossa (Geurts et al., 2005).

A T2WI relies upon the transverse relaxation (also known as "spin-spin" relaxation) of the net magnetization vector (NMV). T2 weighting tends to require long TE and TR times. T2weighted conventional spin-echo or turbo spin-echo (T2 TSE) sequences are known to be more sensitive in the detection of infratentorial lesions but have difficulties detecting juxtacortical lesions. DIR sequence produces two different inversion pulses, which attenuates the CSF together with the whole white matter, thus providing a remarkable delineation between gray and white matter. MS plaques located in the grey matter are more easily delineated using DIR (Wattjes et al., 2007).