

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Value of transthoracic echocardiography in predicting short term major adverse cardiac events after ST-segment elevation myocardial infarction in COVID 19 Era

Thesis

Submitted for Partial Fulfillment of Master's Degree in Cardiology

By Dina Mohamed Farouk MBBCH

Under supervision of

Prof. Dr. Mona Mostafa Rayan

Professor of Cardiology Faculty of Medicine, Ain Shams University

Dr. Islam Mahmoud Bastawy

Lecturer of Cardiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mona Mostafa Rayan**, Professor of Cardiology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Islam Mahmoud Bastawy,**Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Dina Mohamed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	2
Review of Literature	
Acute Myocardial Infarction	3
COVID 19 and STEMI	20
Patients and Methods	31
Results	38
Master Sheet	57
Discussion	63
Study Limitations	69
Conclusions	70
Recommendations	71
Summary	72
References	74
Arabic Summary	

List of Abbreviations

Abb.	Full term
2D & 3D-STE	. Two and three-dimensional speckle tracking strain echocardiography
ACE	. Angiotensin-converting enzyme
ACS	. Acute coronary syndrome
CABG	. Coronary artery bypass grafting
CAD	. Coronary artery disease
CMR	. Cardiac magnetic resonance
COVID-19	. Coronavirus-induced disease-2019
CT	. Computed tomography
cTn	. Cardiac Troponins
DAPT	. Dual antiplatelet therapy
ECG	. Electrocardiogram
ECM	. Extracellular matrix
ED	. Emergency department
EDD	. End-diastolic diameter
EKG	. Electrocardiogram
EMS	. Emergency Medical Services
ESD	. End-systolic diameter
FITT-STEMI	Feedback Intervention and Treatment Times in ST-Elevation Myocardial Infarction
FMC	. First medical contact
GE	. General Electrics
GLS	. Global longitudinal strain
HDL	. High-density lipoprotein
IV	. Intravenous
LBBB	. Left bundle branch block
LDL	. Low-density lipoprotein
LS	. Longitudinal strain

List of Abbreviations Cont...

Abb.	Full term
LV	. Left ventricular
LVEF	. Left ventricular ejection fraction
MACE	. Major adverse cardiovascular events
MI	. Myocardial infarction
MRA	. Mineralocorticoid receptor antagonist
MVO	. Microvascular obstruction
NSTE-ACS	Non ST elevation – acute coronary syndrome
OASIS 6	Organization for the Assessment of Strategies for Ischemic Syndromes 6
PCI	. Percutaneous coronary intervention
ROI	. Region-of-interest
RV	. Right ventricular
SaO2	. Arterial oxygen saturation
SCAI	Society for cardiovascular Angiography and Interventions
STE	. Speckle tracking echocardiography
STEMI	ST-segment elevation myocardial infarction
UFH	. Unfractionated heparin

List of Tables

Table No.	. Title	Page No.
Table (1):	ESC guidelines for the managem dyslipidemias recommendations for lowering therapy in patients with ACS	lipid-
Table (2):	Shows the demographic data of the group.	
Table (3):	Shows the data of clinical presentation hospital and 3 month MACE.	
Table (4):	Shows angiographic data.	40
Table (5):	Shows echocardiographic data	41
Table (6):	Shows comparison of demographic between COVID and non COVID group	
Table (7):	Shows comparison of clinical data b COVID and non COVID group	
Table (8):	Shows comparison of angiographic between COVID and non COVID group	
Table (9):	Shows comparison of echocardiograph between COVID and non COVID group	
Table (10):	Shows comparison of demographic clinical data of whole study partibetween MACE and no MACE group	cipants
Table (11):	Shows comparison of angiographic of whole study participants between MAC no MACE group.	CE and
Table (12):	Shows comparison of echocardiograph of whole study participants between and no MACE group	MACE
Table (13):	Shows comparison of demographic clinical data of COVID 19 partibetween MACE and no MACE group	cipants

List of Cables Cont...

Table No.	Title	Page No.
Table (14):	Shows comparison of angiographic COVID 19 participants between Mano MACE group	ACE and
Table (15):	Shows comparison of echocardiograp of COVID 19 participants between and no MACE group	n MACE

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Macrophages (M), SMCs, platelets, and B and T cells contribute to plaque development, potentially culminating in thrombosis	
Figure (2):	Outline risks vs. benefits in treating STEMI patients with thrombolysis vs. primary PCI during the COVID-19 pandemic	
Figure (3):		
Figure (4):	Proposed treatment algorithm for management of STEMI during COVID-19	
Figure (5):	Illustrations of the Steps involved in speckle tracking echocardiography	
Figure (6):	Shows a topographic representation of the regional and global longitudinal strain of all 17 analyzed segments (bull's-eye configuration) of case Number 84 COVID + ve patient)	
Figure (7):	Shows a topographic representation of the regional and global longitudinal strain of all 17 analyzed segments (bull's-eye configuration) of case Number 12 non COVID -ve patient.	

Introduction

Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. Patients with AMI and Coronavirus-induced disease-2019 (COVID-19) infection have increased mortality risk mainly due to increased burden of comorbidities. After myocardial infarction, patients are at increased risk for major adverse cardiac events (MACE) including re-infarction, heart failure and mortality. This risk increases with the presence of left ventricular systolic dysfunction (1,2,3).

Echocardiography plays an important role after STsegment elevation myocardial infarction (STEMI) in evaluation of left ventricular systolic and diastolic functions and in identification of mechanical complications if present ⁽⁴⁾. Despite technical improvement, there is considerable inter-observer variability in evaluation of left ventricular ejection fraction and resting segmental wall motion abnormality (5). Measuring left ventricular peak systolic global longitudinal strain may be a useful addition to ejection fraction with some evidence of lower observer variability (4).

AIM OF THE WORK

Aim of the study: is to evaluate different parameters of echocardiography in predicting MACE in patients after acute STEMI in the era of COVID 19.

Chapter 1

ACUTE MYOCARDIAL INFARCTION

Definition of AMI

The clinical definition of Myocardial Infarction denotes the presence of acute myocardial injury detected by abnormal cardiac biomarkers in the setting of evidence of acute myocardial ischemia defined by detection of an elevated cardiac Troponins (cTn) value above the 99th percentile. The injury is considered acute if there is a rise and/or fall of cTn values. (Fourth universal definition of myocardial infarction (2018). ⁽⁶⁾

Pathophysiology

AMI is commonly defined as a cardiomyocyte death due to a prolonged ischemia resulting from an acute imbalance between oxygen supply and demand. The 'clinical' definition of MI was recently updated, focusing on the values of serum markers of cardiac necrosis, such as cTn.⁽⁷⁾