

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Medicine Department of Obstetrics and Gynecology

Prognostic value of Human epididymis protein 4 (HE4) for persistent proteinuria in women with severe preeclampsia / HELLP syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics & Gynecology

Presented by

Ibrahim Morsi Ibrahim

M.B., B.Ch-2011-Faculty of medicine Ain Shams University Resident of Obstetrics and Gynecology -Mansheyet El Bakry General Hospital

Under Supervision of

Dr. Ihab Fouad Serag Eldin Allam

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Sherif Ahmed Ashoush

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Radwa Rasheedy Ali

Assistant professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

First of all thanks to **ALLAH** Who gives us the gift of knowledge and understand.

Words do fail to express my deepest gratitude and appreciation to **Prof. Dr. Ihab Fouad Serag Eldin Allam**, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his excellent guidance, powerful support, supervision, and help throughout the accomplishment of this study. I owe him more than I can express for all his big efforts in bringing this work to light.

It is a great honor for me to take this opportunity to express my most profound gratitude, deep respect, and appreciation to **Prof. Dr. Sherif Ahmed Ashoush,** Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University, for the immeasurable time and effort devoted to the revision, encouragement, and correction of the manuscript. I owe him more than I can express for all the so long time he spent revising every detail.

A am deeply indebted and grateful to **Prof Dr. Radwa Rasheedy Ali,** Assistant professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, who offered much of his time and advice through my work in this study. Her kind assistance, great support, and sincere cooperation have affected the outcome of this work

Finally, it gives me the greatest pleasure to thank all my family members, my colleagues, and my friends for their continuous support and encouragement.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	i
List of Figures	iii
Protocol	
Introduction	1
Aim of the Study	4
Review of Literature	
Hypertensive Disorders in Pregnancy (HDPs)	5
Impact of Preeclampsia on the Kidney	29
Human Epididymis Protein 4 (HE4)	44
Patients and Methods	50
Results	
Discussion	94
Summary and Conclusion	
Recommendations	
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACOG	American college of obstetrics and gynecology
	Angiotensin-converting-enzyme
	Albumin-to-creatinine ratio
AER	Albumin excretion rate
AHA	American Heart Association
AKI	Acute kidney injury
	Alanine transaminase
ARR	Absolute risk reduction
ASA	American Stroke Association
AST	Aspartate transaminase
	Area under curve
BMI	Body mass index
BP	Blood pressure
CA125	Cancer antigen 125
CKD	Chronic kidney disease
CKD-EPI	Chronic kidney disease epidemiology
	collaboration
CVD	Cardiovascular disorders
DBP	Diastolic blood pressure
eGFR	Estimated glomerular filtration rate
EIA	Enzyme immunoassay
ELISA	Enzyme-linked immunosorbent assay
	Epithelial ovarian cancer
ESRD	End-stage renal disease
FDA	Food and drug administration
	Gestational age
Hb	_
HELLP	Hemolysis, Elevated Liver enzymes, Low
	Platelet count
	Hypertensive disorders of pregnancy
HE4	Human epididymis protein 4

List of Abbreviations Cont...

Abb.	Full term
НІ.А	Human leucocytic antigen
	Horseradish peroxidase
<u>IL</u>	-
	International normalized ratio.
	Intra-uterine growth restriction
	Intrauterine fetal death
	National Institute for Health and Care
	Excellence
NKs	Natural killer cells
NVD	Normal vaginal delivery
O.D	Optic density
PCR	Protein-to-creatinine ratio
PE	Preeclampsia
PER	Protein excretion rate.
	Pregnancy-induced hypertension
PT	Prothrombin time
PTT	Partial thromboplastin time
ROC	Receiver operating characteristic
RR	
SBP	Systolic blood pressure
SD	Standard deviation
sFlt-1	Soluble fms-like tyrosine kinase -1
SLE	Systemic lupus erythematosus
SOGC	Society of obstetricians and gynecologists of
	Canada
	Statistical program for social science
	Tetramethylbenzidine substrate
UOP	-
	Vascular endothelial growth factor
WHO	World health organization

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Risk factors for preeclampsia Acute complications of preeclampsi	
Table (3):	Criteria for CKD (either of the present for > 3 months)	•
Table (4):	PCR categories according to KIDIG	O 201258
Table (5):	eGFR categories according to KIDI	GO 2012 60
Table (6):	Prognosis of CKD by GFR and all categories: KIDIGO 2012	
Table (7):	Baseline characteristics and der data	-
Table (8):	Admission characteristics of the population	· ·
Table (9):	Laboratory work-up on admission (day1) 70
Table (10):	Laboratory data follow up on day and day 3	- · · · · · · · · · · · · · · · · · · ·
Table (11):	Main outcome measures registered months of delivery	
Table (12):	Factors affecting proteinuria p after 3 months of delivery	
Table (13):	Logistic regression analysis for factors of the persistence of protein	
Table (14):	Correlation between HE4 (picomolo other studied parameters: numerical	
Table (15):	Correlation between HE4 picomoloother studied parameters: categoric	

List of Tables Cont...

Table No.	Title 1	Page No.
Table (16):	Frequency of monitoring showing prevalence of chronic kidney disease studied group 3 months postgaccording to KIDIGO 2012	in the partum
Table (17):	Logistic regression analysis for the factors of CKD according to KIDIGO of with persistent proteinuria (PCR >18 3moths post-partum)	criteria 50mg/g

List of Figures

Fig. No.	Title Page N	10.
Figure (1):	Schematic of the pathogenesis of preeclampsia	11
Figure (2):	Pathogenesis of preeclampsia: two-stage model	12
Figure (3):	Management of hemolysis, elevated liver enzymes, and low platelets syndrome	26
Figure (4):	Mission Expert Urine Reagent Strips Parameters	55
Figure (5):	Chart for participants flow through the study	64
Figure (6):	Percentage of cases with first time SPET and recurrent SPET.	65
Figure (7):	Percentage of cases with early and late onset SPET.	67
Figure (8):	Percentage of cases with IUGR	68
Figure (9):	Admission PCR categories	68
Figure (10):	Birth weight percentiles among the studied cases.	69
Figure (11):	The change in serum creatinine on day1, day2, day3	72
Figure (12):	The change in serum uric acid on day1, day2, day3	
Figure (13):	The change in eGFR by MDRD equation on day 1, 2, and 3	73
Figure (14):	Persistent proteinuria after 12 weeks of delivery.	76
Figure (15):	eGFR categories after 12 weeks of delivery	76
Figure (16):	PCR category after 12 weeks of delivery	77
Figure (17):	Effect of HE4 (picomol/l) level on the outcome of persistent proteinuria	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Effect of BMI on the outcome of perproteinuria.	
Figure (19):	Effect of eGFR by CKD-EPI on the of persistent proteinuria	
Figure (20):	Effect of dipstick albuminuria admission day on the outcome of perfection proteinuria	ersistent
Figure (21):	The ROC curve analysis for properformance of serum HE4 for perpoteinuria after 12 weeks of delewomen with SPET/HELLP syndron	ersistent ivery in
Figure (22):	The relationship between HE4 leage	
Figure (23):	The relationship between HE4 leparity	
Figure (24):	The relationship between HE4 le admission UPCR	
Figure (25):	The relationship between HE4 level 1 serum creatinine	•
Figure (26):	The relationship between HE4 leday1 eGFR	
Figure (27):	The ROC curve analysis for properformance of serum HE4 for according to KIDIGO criteria persistent proteinuria (PCR >150 months of delivery in women SPET/HELLP syndrome	redictive or CKD a with Omg/g 3 n with

PROTOCOL OF A THESIS FOR PARTIAL FULFILMENT OF MASTER DEGREE IN OBESTETRIC AND GYNECOLOGY

Title of the Protocol: Prognostic value of Human epididymis protein 4 (HE4) for persistent proteinuria in women with severe preeclampsia / HELLP syndrome.

Postgraduate Student: Ibrahim Morsi Ibrahim

Degree: M.B., B.Ch – 2011 – Faculty of medicine Ain Shams

University

DIRECTOR: Dr. Ihab Fouad Serag Eldin Allam

Academic Position: Professor

Department: Obstetrics and gynecology.

Co-DIRECTOR: Dr. Sherif Ahmed Ashoush **Academic Position:** Assistant Professor **Department:** Obstetrics and gynecology.

Co-DIRECTOR: Dr.Radwa Rasheedy Ali

Academic Position: Lecturer

Department: Obstetrics and gynecology.

Faculty of medicine Ain Shams University

What is already known on this subject?

Severe preeclampsia and/or HELLP syndrome is a multisystem disorder that is associated with kidney affection, and correlated to increased future risk of persistent albuminuria, deterioration of glomerular filtration rate (GFR), and chronic kidney disease.

1. INTRODUCTION/ REVIEW

Preeclampsia (PE) is a multisystem disorder unique to human pregnancy, that is characterized by new-onset hypertension (blood pressure ≥140/90 mmHg) and proteinuria (≥300 mg/dl) after 20 weeks of gestation (Chaiworapongsa et al., 2014). Preeclampsia (PE) complicates around 4.6 percent of pregnancies worldwide, that reach up to 10% of pregnancies in developing countries (*Grill et al.*, 2009; *Abalos et al.*, 2013).

PE affects kidney function during pregnancy and also increases the risk of future chronic kidney disease (CKD) and cardiovascular disease, with a fourfold increased risk of developing end-stage renal disease (ESRD) within 10 years after pregnancy (Vikse et al., 2008; Machado et al., 2012).

Preeclampsia causes direct kidney injury resulting in proteinuria that continues to mediate subsequent injury. (Hallan et al., 2009). Proteinuria after preeclampsia generally resolve within twelve weeks after delivery, but some cases up to 14 % will have persistent proteinuria twelve weeks after delivery, However proteinuria which persist more than three months should prompt