

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Comparative study between ultrasound guided pudendal nerve block versus caudal epidural block anesthesia in children undergoing hypospadias Surgery

Thesis

Submitted for Partial Fulfilment of M.D. in Anesthesia, Intensive Care Unit and Pain Management

By Mohamed Hamed Abd El Aziz M.B.B.C.

Under supervision of

Prof. Dr. Mohamed Hossam Eldin Hamdy Abd Elwahed Shokier

Professor of Anesthesia, Intensive Care Unit and Pain Management Faculty of Medicine – Ain Shams University

Prof. Dr. Sherif Gorge Anees Saed

Assistant Professor Anesthesia, Intensive Care Unit and Pain Management Faculty of Medicine – Ain Shams University

Prof. Dr. Walid Abdalla Ibrahim

Assistant Professor of Anesthesia, Intensive Care Unit and Pain Management Faculty of Medicine – Ain Shams University

Dr. Amr Ahmed Ali Kassm

Lecturer of Anesthesia, Intensive Care Unit and Pain Management Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohamed Hossam Eldin Hamdy Abd Elwahed Shokjer**, Professor of Anesthesia, Intensive Care Unit and Pain Management, Faculty of Medicine – Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Prof. Dr. Sherif Gorge Anees Saed**, Assistant Professor Anesthesia, Intensive Care Unit and Pain Management, Faculty of Medicine – Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of **Prof. Dr. Walid Abdalla**Ibrahim, Dr. Amr Ahmed Ali Kassm Assistant Professor of Anesthesia,
Intensive Care Unit and Pain Management, Faculty of Medicine – Ain
Shams University for his invaluable efforts, tireless guidance and for his
patience and support to get this work into light.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Mohamed Hamed Abd El Aziz

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	
Aim of the Work	3
Review of Literature	
Local Anesthetics	4
Caudal Block	29
Pudendal Nerve Block (PNB)	40
Patients and Methods	49
Results	54
Discussion	73
Conclusion	80
Summary	81
References	83
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAG	Alpha 1 acid glycoprotein
	Advanced cardiovascular life support
	American society of regional anesthesia
	Central nervous system
CSF	Cerebrospinal fluid
CVS	Cardiovascular system
Fe+2	Ferrous iron
Fe+3	Ferric iron
G	Gauge
GA	General anesthesia
H	Hour
Hb	Hemoglobin
IM	Intramuscular
IV	Intravenous
K+	Potassium
kg	Kilogram
LA	Local Anesthetics
ml	Milliliter
mm	Millimeter
n	Number
Na+	Sodium
NaHCO3	Sodium bicarbonate
NSAID	Non steroidal anti-inflammatory drugs
	Post anesthesia care unit
PDPH	Postdural puncture headache
PNB	Pudendal nerve block
SD	Standard deviation
US	Ultrasound

List of Tables

Table No.	Ti	tle	Page No.
Table (1):	Comparison betw B regarding characteristics of	demograph	ic and
Table (2):	Comparison betw B regarding he intraoperative and	art rate pre	eoperative,
Table (3):	Comparison betw B regarding mean preoperative, postoperative	arterial blood intraoperativ	d pressure e and
Table (4):	Comparison betw B regarding preoperative, postoperative	respirator intraoperativ	y rate e and
Table (5):	Comparison betw B regarding preoperative, postoperative	oxygen s intraoperativ	saturation e and
Table (6):	Comparison betw B regarding object different times of	tive pain score	e (OPS), at
Table (7):	Comparison betw B regarding time total dose of aceta	e of first anal	gesia and

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Structure of local anestheti	
Figure (2):	Manifestations of LA according to LA plasma con	•
Figure (3):	Anatomy of the sacrum	31
Figure (4):	Positioning	34
Figure (5):	Caudal block technique	35
Figure (6):	The pudendal nerve pass the ischial spine and cros	ses behind
Figure (7):	the sacrospinous ligament. The pudendal nerve enter greater sciatic foramen a around the sacrospinous ligament.	ed via the nd curved
Figure (8):	Illustration showing the and patient's positionin pudendal nerve block	g during
Figure (9):	Illustration showing puder vessels, and boney landman	•
Figure (10):	Sonogram of pudendal a nerve locations	•
Figure (11):	Fluoroscopy-guided puden block	
Figure (12):	Comparison between group B regarding age of t patients	he studied
Figure (13):	Comparison between group B regarding height studied patients	ht of the
Figure (14):	Comparison between group B regarding weig studied patients.	up A and ht of the

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (15):	Comparison between group B regarding surgery	duration of
Figure (16):	Comparison between group B regarding dura	
Figure (17):	Comparison between group B regarding preoperative, intraop postoperative	heart rate erative and
Figure (18):	Comparison between group B regarding no blood pressure intraoperative and posterior	nean arterial preoperative,
Figure (19):	Comparison between group B regarding respressive, intraop postoperative	spiratory rate erative and
Figure (20):	Comparison between group B regarding oxyg preoperative, intraop postoperative	group A and gen saturation erative and
Figure (21):	Comparison between group B regarding o score (OPS), at differ measurement	group A and bjective pain rent times of
Figure (22):	Comparison between group B regarding o score (OPS), at 6 hrs	group A and bjective pain
Figure (23):	Comparison between group B regarding o score (OPS), at 12 hrs	group A and bjective pain

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (24):	Comparison between group B regarding score (OPS), at 24 hrs.	objective pain
Figure (25):	Comparison between group B regarding analgesia	time of first
Figure (26):	Comparison between group B regarding acetaminophen	group A and total dose of

Introduction

Although general anesthesia is the commonly used technique in children, regional anesthesia is used as an adjuvant for intraoperative and postoperative pain relief. Caudal analgesia is the most common regional technique performed in children. It has been used for many years as an adjuvant to general anesthesia and to provide postoperative analgesia for subumbilical procedures (*Cyna et al.*, 2008).

However in recent times, there is a trend toward the use of peripheral nerve blockade wherever applicable, given the lower incidences of adverse effects when used with neuroaxial techniques. Furthermore there may be specific anatomic variations or abnormalities which preclude the use of caudal blockade (*Naja et al., 2013*).

Of the various peripheral nerve block techniques available, the pudendal nerve block is a new and rapidly evolving peripheral nerve block technique that provides effective analgesia during the postoperative period following penile surgeries. The intra and postoperative analgesic efficacy ofpudendal nerve block has been successfully described in adult patients undergoing penile surgeries and vaginal delivery in females (*Naja et al.*, 2013).

Few studies on children have been done by some authors who concluded that the use of pudendal nerve block is a good alternative in pediatric patients for postoperative pain management in penile surgeries. It can performed using a landmark technique through transcutaneous using peripheral nerve stimulator or with ultrasound (US) guidance (Sahin et al., 2013).

Aim of the Work

The aim of the study is to compare the effectiveness and safety of US guided pudendal nerve block versus caudal epidural block as a part of multimodal analgesia in children undergoing hypospadias surgery.

Chapter 1

Local Anesthetics

Introduction:

Local anesthetics (LA) are drugs that block conduction of electrical impulses in excitable tissues. These tissues include the nerve cells and myocytes (both cardiac and skeletal muscles). Analgesia and anesthesia occur as a result of the blockage of electrical impulses (*Mumba et al.*, 2017).

Nerve Conduction:

The resting membrane potential of a nerve cell is in the range of -60 to -70 mV. At rest, neurons are more permeable to potassium (K+) ions due to the presence of K+ leak channels. This explains why the resting neuronal membrane potential is closer to the equilibrium potential of K+ of -80 mV. The intracellular milieu of the nerve cell is negatively charged relative to the extracellular. Upon excitation of the nerve fibres, the electrical impulse propagates along the axon as a result of changes occurring in the adjacent membrane alternating from negative to positive values of about +50 mV due to rapid influx of Na+ ions. At an electrical potential of +50 mV, there is rapid efflux of K+ ions in an attempt to maintain electrical neutrality of the cell. To restore the resting membrane potential, the Na+/K+ ATPase pumps Na+ extracellularly, while the opposite happens to the K+. The conduction of impulses along nerve fibers occurs as small brief, localized spikes of depolarization on the surface of the