

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A retrospective analysis of epidemiology and clinical outcomes of patients with adult gliomas treated in Ain Shams clinical oncology department in the period from 2017 till 2020.

Thesis

Submitted in Partial Fulfillment of the M.Sc. Degree in Clinical Oncology and Nuclear Medicine

By

Hadeer Hesham Mostafa Mohamed

M.B., B.Ch., Ain Shams University

Supervised by

Prof. Dr. Lobna Rashed Fzz Fl Arab

Professor at Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Mai Ezz El Din

Assistant Professor at Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Ahmed Said Ibrahim

Lecturer at Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Ghada Refaat Meckawy

Lecturer at Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Lobna Rashed**Ezz El Arab, Professor at Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mai Ezz El Din,** Assistant Professor at Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Said Ibrahim**, Lecturer at Clinical Oncology and Nuclear
Medicine Faculty of Medicine, Ain Shams University, for
her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr. Ghada Refaat Meckawy**, Lecturer at Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hadeer Hesham Mostafa Mohamed

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
Epidemiology of Glioma	5
Etiology and Risk Factors for Glioma	11
Diagnosis and Staging of Newly Diagnosed Glic Patients	
WHO Classification and Molecular Classification	on28
Treatment and Prognosis of Different Grades of	f Glioma 35
Patients and Methods	53
Results	57
Discussion	82
Summary	95
Conclusion	97
Limitation	98
Recommendations	99
References	100
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Number of new cases and estimated in the United states in 2021, both s ages	exes, all
Table (2):	Number of new cases and deaths i in 2020 in both sexes, all ages	
Table (3):	Trends in 5-year relative survival (American cancer society Cancer fafigures).	acts and
Table (4):	CNS WHO Grades of Selected Covering Entities for Which There I Approach to Grading,	s a New
Table (5):	Age distribution of the study popular	tion58
Table (6):	Distribution of the study population	by sex 58
Table (7):	Distribution of the study popular residence	
Table (8):	Distribution of occupations among the population.	
Table (9):	Distribution of the study popula smoking history	-
Table (10):	Distribution of the study popula ECOG P.S at presentation	
Table (11):	Distribution of diagnosis of the population by histopathology	•
Table (12):	Distribution of the tumor site am study participants	
Table (13):	Distribution of the sympton presentation among the study popul	
Table (14):	Distribution of types of di confirmation	· ·

Tist of Tables (Cont...)

Fig. No.	Title	Page No.
Table (15):	Distribution of different type of among the study population	
Table (16):	Percentage of patients who radiotherapy	
Table (17):	Percentages of patients who chemotherapy.	
Table (18):	Distribution of chemotherapy by air	n 66
Table (19):	Percentages of different ty fractionation among radiotherapy group.	receivers
Table (20):	Correlation between age and grade years of age as a cutoff	
Table (21):	Correlation between grade and sex.	68
Table (22):	Correlation between residence incidence of different grades of glion	
Table (23):	Correlation between smoking hist grade of gliomas.	-
Table (24):	Median progression free survival line modality	
Table (25):	Median progression free survival line modality among different grade	
Table (26):	Median PFS after 1st line modality different types of surgeries	
Table (27):	Log rank test and correlation with variables.	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Number of new cases worldwide both sexes, all ages	
Figure (2):	Number of deaths worldwide i both sexes, all ages	
Figure (3):	Distribution of all primary brain a tumors by site.	
Figure (4):	WHO classification of diffuse a and oligodendroglial tumors	
Figure (5):	Treatment of glioblastoma in populations	
Figure (6):	Distribution of different grades of among the study population	_
Figure (7):	Distribution of the tumors involv one lobe by site.	
Figure (8):	Progression free survival after modality.	
Figure (9):	Comparison of PFS curves after modality among different grades.	
Figure (10):	Correlation between type of surg PFS after 1st line modality	•
Figure (11):	Correlation between PFS after and ECOG P.S	
Figure (12):	Correlation between PFS after modality and symptoms at presen	
Figure (13):	The overall survival of the population	•
Figure (14):	Correlation between grade and overall survival probability	

Tist of Figures (Cont...)

Fig. No.	Title	Page No	٥.
Figure (15):	Correlation between surgery a overall survival.		. 78
Figure (16):	Correlation between ECOG median OS.		. 79
Figure (17):	Correlation between ECOG median OS.		. 80
Figure (17):	Correlation between pathology median overall survival	v <u>-</u>	. 81

Tist of Abbreviations

Abb.	Full term
MLH1	.MutL homolog 1
MSH2	MutS homolog 2
MSH6	MutS homolog 6
PMS2	.Mismatch repair endonuclease PMS2
<i>HNPCC</i>	.Hereditary nonpolyposis colorectal cancer
<i>TERT</i>	. Telomerase reverse transcriptase
CDKN2A/CDKN	72B
RTEL1	.Human telomere length regulator
PHLDB1	Pleckstrin homology-like domain family B member 1
<i>EGFR</i>	.Epidermal growth factor receptor
NGS	Next-generation sequencing
$ATRX\ mutation$.	The chromatin regulator gene, alphathalassemia/mental retardation syndrome X-linked (ATRX)
<i>IDH</i>	.Isocitrate dehydrogenase
SEGA	.Subependymal giant cell astrocytoma
<i>OS</i>	. Overall survival
<i>PFS</i>	Progression free survival
<i>PCV</i>	Procarbazine, lomustine, and vincristine
<i>GTR</i>	$.Gross\ total\ resection.$
<i>MSR</i>	Maximal safe resection.
STR	.Subtotal resection.
<i>TMZ</i>	. Temozolomide

Tist of Abbreviations (Cont...)

Abb.	Full term
<i>MGMT</i>	Methyl-guanine methyl transferase
CNS	Central nervous system
<i>WHO</i>	World Health Organization
ECOG P.S	Eastern Cooperative Oncology Group performance status.
MRS	Magnetic resonance spectroscopy
<i>ENCR</i>	European Network of Cancer Registries.
<i>UK</i>	United Kingdom
CT	Computed tomography
<i>MRI</i>	Magnetic resonance imaging
IARC	The International Agency for Research on Cancer
TP53	Tumor protein 53
<i>LFS</i>	The Li-Fraumeni syndrome
<i>IgE</i>	$Immunoglobulin\ E$
<i>ICT</i>	$Increased\ intracranial\ tension.$
<i>CSF</i>	Cerebrospinal fluid
FLAIR	Fluid-attenuated inversion recovery
NOS	Non-otherwise specified
FISH	Fluorescence in situ hybridization
<i>PXA</i>	$Pleomorphic\ X anthoastrocytoma$
dMMR	Mismatch repair deficiency
ORR	Overall response rate
EORTC	the European Organisation for Research and Treatment of Cancer

Tist of Abbreviations (Cont...)

Abb.	Full term
RCTs	Randomized controlled trials.
NCRP	National Council in Radiation Protection and Measurements
<i>KPS</i>	Karnofsky Performance Status
mTOR	
<i>GTR</i>	Gross total resection.
HR	

Introduction

Cliomas are the most common primary malignant brain tumors in adults. The term refers to tumors that have histologic features similar to normal glial cells (astrocytes and oligodendrocytes). Glioma comprises a wide spectrum of tumors with varying biologic aggressiveness (*Schwartzbaum et al.*, 2006).

The classification of glioma has developed over time. Historically, WHO (world health organization) has classified glioma into low-grade glioma (grade I-II) and high grade glioma (grade III-IV), based on the growth pattern of these tumors (Louis et al., 2016a). Starting from 2016, WHO edition has incorporated molecular features along with the hisopathologic characteristics in the classification of glioma, this has highly impacted the classification of oligodendroglioma and astrocytoma that are now categorized as diffuse glioma based not only on pattern and behaviour but also IDH (Isocitrate growth dehydrogenase) molecular status (Capper et al., 2018).

A new WHO classification was issued in mid-2021. The fifth WHO classification introduces major changes that incorporates additional molecular approaches, as those discussed in the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT) updates one through seven. It has also included changes in nomenclature; the use of the term "type" and "subtype" instead of "entity" and