

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ADAMTS13 and von Willebrand Factor Levels in Patients with Chronic Hepatitis C: Relations to Hemostatic Imbalance and Bacterial Infection

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical & Chemical Pathology

By

Hend Gamal El Din Ebrahim Attoa

M.B., B.Ch. Benha University Haematology Resident, Theodor Bilharz Research Institute

Under supervision of

Prof./ Mona Ahmed Wahba

Professor of Clinical & Chemical Pathology Faculty of Medicine - Ain Shams University

Prof./ Nora El-Bassiouni Ibrahim El-Bassiouni

Professor of Clinical & Chemical Pathology Haematology Department - Theodor Bilharz Research Institute

Dr./ Yasmin Nabil ElSakhawy

Assistant Professor of Clinical& Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain shams University
2021

Acknowledgment

First and foremost, thanks to **Allah**; to whom I relate any success in achieving any work in my life.

Words stand short when they come to express my gratefulness to my supervisors. I wish to express my deepest gratitude to **Prof. Dr. Mona Ahmed Wahba**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her effective guidance, unlimited help and support. No words of gratitude would be enough for her. I really have the honor to complete this work under her supervision.

I wish to express my deep appreciation and profound gratitude to **Prof. Dr. Nora El-Bassiouni Ibrahim El-Bassiouni**, Professor of Clinical and Chemical Pathology, Theodor Bilharz Research Institute, for her indispensable guidance, instructional supervision, continuous support, unlimited help and close supervision throughout the entire work.

A special tribute is paid to **Prof. Dr.Nariman Zahran,** Professor of Hematology, Hematology Department, Theodor Bilharz Research Institute, for her generous help, valuable advice and continuous support.

I am greatly honored to express my sincere gratitude and deep appreciation to **Assist. Prof. Dr. Yasmin Nabil ElSakhawy,** Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her help and support.

I am extremely grateful to **Dr. Raffat A. Ibrahim**, Assistant Professor of Tropical Medicine, Liver and Gastroentrology Departement, Theodor Bilharz Research Institute, for his cooperation and kind help.I

I would like to thank all the staff members and colleagues of the Haematology Department, Theodor Bilharz Research Institute who supported me a lot throughout this entire work.

Last but not least, my deepest appreciation is expressed to all members in my family, especially my *Mother, soul of Father* and *my sisters* for their continuous support, love and encouragement.

Hend Gamal El Din
2021

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	V
Introduction	1
Aim of the Work	3
Review of Literature	
1. ADAMTS13 and Von Willebrand Factor	4
2. Liver Cirrhosis	17
Subjects and Methods	30
Results	46
Discussion	75
Summary	90
Conclusion	94
Recommendations	95
References	96
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ADAM : A Disintegrin and Metalloprotease

ADAMTS13 : A dis-integrin and metalloproteinase with

a Thrombospondin type-1 motif

AF : Ascitic fluid

ALT : Alanine amino transferase **ANC** Absolute neutrophil count

aPTTs : Activated partial thromboplastin times

AST : Aspartate amino transferase

AT : Antithrombin III

CRP : C reactive protein

CUB : Complement component C1r/C1s, Uegf,

and bone morphogenic protein 1 domain.

cys-rich : Cysteine-rich domain

dis-like : Disintegrin-like domain

EDTA : Ethylenediaminetetraacetic acid

EGF : Epidermal growth factor

GP Ib : Glycoprotein Ib

GP Ib-IX-V: Glycoprotein Ib-IX-V

Hb : Hemoglobin

HCT : Hematocrit value

HMWM: High molecular weight multimers

HSCs: Hepatic stellate cells

LBP Lipopolysaccharide binding protein

MCV : Mean cell volume

mRNA : Micro ribonucleic acid

PAI-1 : Plasminogen activator inhibitor-1PAI-2 : Plasminogen activator inhibitor-2

PC : Proteins protein C
PH : Portal hypertension
PHT : Portal hypertension
PMN : Polymorphonuclear

pro-VWF : Von Willebrand factor propeptide

PS: Protein S

PT : Prothrombin times

PVT : Portal vein thrombosis

RBCs : Red cell count

ROC : Receiver operating characteristics

RT-PCR: Reverse transcriptase-polymerase chain

reaction

SBP : Spontaneous Bacterial Peritonitis

SP : Signal peptide

TAFI: Thrombin Activatable Fibrinolysis

Inhibitor

TM : transmembrane domain

tPA : Tissue plasminogen activator

TSP1 : Thrombospondin type-1 motifs

TTP : Thrombotic thrombocytopenic purpura

UL-VWF : Ultra large Von Willebrand factor

VWF : Von Willebrand factor

VWF Ag : Von Willebrand factor antigen

WBCs: White blood cell count

List of Tables

Table No	. Title	Page No.
Table (1):	Grades of ascites	19
Table (2):	Modified Child-Pugh classification	34
Table (3):	Clinico-demographic and laboratory in healthy subjects and patients chronic liver disease.	with
Table (4):	Liver function tests of healthy sub and patients with chronic liver diseas	•
Table (5):	Haemogram of healthy subjects patients with chronic liver disease	
Table (6):	Absolute neutrophil count (x10 ⁹ /healthy subjects and patients with ch liver disease.	ronic
Table (7):	C-reactive protein (mg/l) in he subjects and patients with chronic disease.	liver
Table (8):	Lipopolysaccharide binding pr (μg/ml) in healthy subjects and pa with chronic liver disease	tients
Table (9):	Von Willebrand factor (%) in he subjects and patients with chronic disease.	•
Table (10):	ADAMTS 13 levels (mg/dl) in he subjects and patients with chronic disease.	liver

Table (11):	D-dimer levels ($\mu g/ml$) in healthy subjects and patients with chronic liver disease.	58
Table (12):	Sensitivity and specificity of CRP, LBP, ADAMTS13, VWF and D-dimer in Child A patients with chronic liver disease.	61
Table (13):	Sensitivity and specificity of CRP, LBP, ADAMTS13, VWF and D-dimer in Child B patients with chronic liver disease.	62
Table (14):	Sensitivity and specificity of CRP, LBP, ADAMTS13, VWF and D-dimer in Child C patients with chronic liver disease.	63
Table (15):	Sensitivity and specificity of CRP, LBP, ADAMTS13, VWF and D-dimer in chronic liver disease Child C patients with SBP.	64
Table (16):	Correlation analysis in Child A patients with chronic liver disease.	65
Table (17):	Correlation analysis in Child B patients with chronic liver disease.	68
Table (18):	Correlation analysis in Child C patients with chronic liver disease.	69
Table (19):	Correlation analysis in SBP patients with chronic liver disease.	71

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Schematic representation of VWF.	6
Figure (2):	Simplified biological system interactions between VWF collagen.	and
Figure (3):	Schematic for VWF proteolysis multimer generation	
Figure (4):	Schematic diagram of ADAM ADAMTS metalloproteases and ADAMTS13	d of
Figure (5):	ADAMTS-13 cleaves ultra large (VWF under various conditions	
Figure (6):	VWF functions	15
Figure (7):	Pathophysiology of spontar bacterial peritonitis	
Figure (8):	Normal Haemostasis	23
Figure (9):	Rebalanced haemostasis in chronic disease.	
Figure (10):	Fibrinolysis	26
Figure (11):	Absolute neutrophil count level patients with chronic liver disease healthy subjects	e and
Figure (12):	C reactive protein levels in patients chronic liver disease and he subjects.	ealthy

Figure (13):	Lipopolysaccharide binding protein levels in patients with chronic liver disease and healthy subjects	5
Figure (14):	Von Willebrand factor levels in patients with chronic liver disease and healthy subjects.	6
Figure (15):	ADAMTS 13 levels in patients with chronic liver disease and healthy subjects.	7
Figure (16):	D-dimer levels in patients with chronic liver disease and healthy subjects	8
Figure (17):	ROC curve in Child A patients with chronic liver disease	1
Figure (18):	ROC curve in Child B patients with chronic liver disease. 62	2
Figure (19):	ROC curve in Child C patients with chronic liver disease	3
Figure (20):	ROC curve in Child C patients with SBP. 6	4
Figure (21):	Correlation between ANC and VWF in Child A patients	5
Figure (22):	Correlation between ADAMTS13 and VWF in Child A patients	6
Figure (23):	Correlation between D-Dimer and VWF in Child A patients	6
Figure (24):	Correlation between D-Dimer and ADAMTS13 in Child A patients	7
Figure (25):	Correlation between ADAMTS13 and VWF in Child B patients	8

Figure (26):	Correlation between ADAMTS13 and VWF in Child C patients	69
Figure (27):	Correlation between CRP and VWF in Child C patients.	70
Figure (28):	Correlation between LBP and VWF in Child C patients.	70
Figure (29):	Correlation between ANC and VWF in SBP patients	71
Figure (30):	Correlation between CRP and VWF in SBP patients	72
Figure (31):	Correlation between LBP and VWF in SBP patients	72
Figure (32):	Correlation between ADAMTS13 and VWF in SBP patients	74
Figure (33):	Correlation between D-Dimer and ADAMTS13 in SBP patients	74

Introduction

Ton Willebrand factor (VWF) is a multimeric glycoprotein that is primarily secreted by activated endothelial cells. It supports platelet adhesion and aggregation in a high shear stress environment (Van Mourik et al., 1999). VWF levels are not only markers of portal hypertension but are also independently linked to bacterial translocation, inflammation and procoagulant imbalance. Their levels also predict most clinical events and mortality independently of the severity of portal hypertension (Mandorfer et al., 2018).

The hemostatic and thrombogenic potential of VWF depends on its multimer size, which is regulated by ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type-1 motif, that cleaves VWF multimers to smaller forms less capable of activating platelets (**Soejima** *et al.*, **2001**). Decreased ADAMTS13 activity is a feature of thrombotic thrombocytopenic purpura associated with the abundance of unprocessed, ultra-large VWF in plasma facilitating a prothrombotic state (**Tsai** *et al.*, **2003**).

ADAMTS13 mRNA is primarily expressed in the liver (Levy et al., 2001; Zheng et al., 2001). The hepatic stellate cells are considered a major source of the circulating enzyme (Zhou et al., 2005; Uemura et al., 2008). Activation of quiescent stellate cells to activated liver myofibroblasts