

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

STUDYING MEAT QUALITY TRAITS BYUSING REGULATORY FACTOR GENES EXPRESSION IN BROILER STRAINS

By

KAREMAN AHMED NASSER

B.Sc. Agric. Sc. (poultry production), Fac. Agric., Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agricultural sciences
(Poultry Breeding)

Department of poultry production Faculty of Agriculture Ain Shams University

Approval Sheet

STUDYING MEAT QUALITY TRAITS BYUSING REGULATORY FACTOR GENES EXPRESSION IN BROILER STRAINS

By

KAREMAN AHMED NASSER

B.Sc. Agric. Sc. (poultry production), Fac. Agric., Ain Shams University, 2013

r M. Sc. degree has been approved by:
smail EL-Dlebshany oultry Breeding, Faculty of Agriculture, Alexandria
Galal EL-Sayed Gad Poultry Breeding and Dean of Faculty of Agriculture, Ain niversity
d Youssef Mahrous of Poultry Breeding, Faculty of Agriculture, as University
El-Dein Hassan eritus of Poultry Breeding, Faculty of Agriculture, Ain niversity
Falal EL-Sayed Gad Poultry Breeding and Dean of Faculty of Agriculture, Ainiversity d Youssef Mahrous of Poultry Breeding, Faculty of Agriculture, as University El-Dein Hassan eritus of Poultry Breeding, Faculty of Agriculture, Ain

Date of Examination: / / 2021

STUDYING MEAT QUALITY TRAITS BYUSING REGULATORY FACTOR GENES EXPRESSION IN BROILER STRAINS

By

KAREMAN AHMED NASSER

B.Sc. Agric. Sc. (poultry production), Fac. Agric., Ain Shams University, 2013

Under the supervision of:

Dr. Ali Zain EL-Dain Hassan

Prof. Emeritus of Poultry Breeding, Department of Poultry Production Faculty of Agriculture, Ain Shams University (principal supervisor).

Dr. Mahmoud Youssef Mahrous

Professor of Poultry Breeding, Department of Poultry Production Faculty of Agriculture, Ain Shams University

Dr. Lamiaa Mostafa Radwan

Professor of Poultry Breeding, Department of Poultry Production Faculty of Agriculture, Ain Shams University

Dr. Neima Kouth Alsenosy

Associate Professor, Department of Genetics, Faculty of Agriculture, Ain Shams University

ABSTRACT

KAREMAN AHMED NASSER. Studying Meat Quality Traits by Using Regulatory Factor Gene Expression in Broiler Strains. Unpublished Master of Science dissertation, Ain Shams University, Faculty of Agriculture, Department of Poultry Production, Egypt, 2021.

This experiment was designed to evaluate some productive traits of some commercial strains (Ross and Indian River) with treated by heat stress condition, It is important in genetic studies in order to determining genes responsible for meat quality to commercial strains. And also to compare some productive traits for strains under heat stress conditions.

Main results could be summarized as follows:

- Heat stress measurements (Respiratory rate and rectal temperature) were high significant of Indian River in this the age compared to Ross strain in trait Respiratory rate. But, Rectal temperature of Ross and Indian River strains was not a significant effect of strains.
- Growth characteristics (mainly body weight and body measurement) indicated that Indian River recorded significantly heaviest body weight and higher body measurements at different ages in this study compared to Ross strain.
- Carcass measurements showed that Ross strain was high significant in (heart, Weight of legs, Weight of head, Weight of head, Thigh, Weight of the pin, Weight of breast and Weight of major) compared to Indian River strain. But, found that no significant different between the treatment and control.
- Meat quality showed that some traits (PH, % moisture content and WHC) were effect significant for strains and treatment.
- The showed results that no significantly differences in Myostatin expression levels between Ross strain and Indian River strain in

control, In contrast, the birds under heat stress showed decrease Myostatin expression levels compared with control, whereas Ross strain exhibited significantly higher gene expression (p <0.05) than Indian River strain.

Key words: Heat stress, Myostatin gene, Ross strain and Indian River strain

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to **Prof. Dr. A. Zein EL- Dein,** professor of Poultry Breeding, Poultry Production Department,
Faculty of Agriculture, Ain Shams University, encouragement, valuable advice, interest and remote revising the manuscript.

My deepest gratitude and sincere thanks are extended to **Dr. Mahamoud Youssef,** professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for supporting me in many ways during this study.

Special acknowledgments and deep grateful to **Dr. Lamiaa. M. Radwan**, Associate Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for supporting me in all things during this study and spirit supporting through out the course of the study. Also, her valuable inputs and estimated of gene expression during this study.

All thanks and appreciation to **Dr. Neima K. Alsenosy** Associate Professor, Department of Genetics, Faculty of Agriculture, Ain Shams University to support and constant interest in helping me and motivating

Special thanks to my dear friend to **Dr. Habiba Hassan Rezk**, assistant teacher of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for my constant help and motivation, and you always support me.

My thanks are due to **Abdelhay Gaber Abuhussrin**, Cairo University Research Park for help in technique of Real Time PCR.

I would like to express all my sincere gratitude and unlimited love to my **father**, **mother** and **brother** for their patience, continual encouragement and love.

CONTENTS

Title	Page
INTRODCTION	1
REVIEW OF LITERATURE	3
1. Overview of heat stress (HS)	3
1.1. Respiratory rate	4
1.2. Rectal temperature	5
2. Effect heat stress on broiler strains	6
2.1. Ross strains under heat stress	7
2.2. Indian River (IR) under heat stress	8
3.The productive performance under heat stress of (Ross	
and Indian River) strains	8
3.1.Effect of heat stress on Growth traits	8
3.1.1. Body weight under heat stress	9
3.1.2. Body weight gain under heat stress	10
3.1.3. Body measurement	12
3.1.4. Feed consumption and Feed conversion under heat	
stress	12
4. Effect of heat stress on carcass traits	14
5. Meat quality under heat stress	15
6mortality rate under heat stress	20
7. Physiological measurements	21
7.1. Blood chemistry	21
7.1.1. Plasma glucose	21
7.1.2. Plasma triiodothyronine (T3) and thyroxine (T4)	21
7.1.3. Plasma cholesterol and triglycerides	22
7.1.4. Total plasma antioxidant, dismutase of superoxides,	
dehydrogenase lactates, and lipid peroxides	22
8.The relationship between Myostatin gene and meat	
quality	22
8.1. Definition Myostatin gene	22

9. Economic important of broiler strains under heat stress	26
METERIALS AND METHODS	28
1. Experimental design	28
2.Studies traits	30
2.1.Heat stress exposure	30
2.1.1. Respiratory rate (RR)	30
2.1.2. Rectal temperature (RT)	30
2.2. Productive performance data	31
2.2.1. Body weight and body weight gain.	31
2.2.2. Body measurements	31
2.3. Carcass traits	31
2.4. Feed consumption	31
2.5. Meat quality	32
2.5.1. Microbiological analysis media	32
2.5.1.1. Aerobic plate count medium	32
2.5.1.2. Violet Red Bile Lactose(VRBL) Agar medium	32
2.5.1. 3. Bacteriological buffered peptone water	33
2.5.1.4. Tetrathionate broth base medium	34
2.5.1.5. Xylose Lysine Desoxycholate (XLD)Agar medium	35
2.5.1.6. Bismuth Sulphite agar medium	36
2.5.2. Analytical methods	37
2.5.2.1. Chemical analysis	37
2.5.2.1.1. Total volatile nitrogen (TVN)	37
2.5.2.1.2.Thiobarbituric acid Reactive substances value	
(TBARS)	37
2.5.2.2.Physical analysis	38
2.5. 2.2.1.pH value measurement	38
2.5 2.2.2.Water holding capacity (WHC) and plasticity	38
2.5.2. 3.Microbiological analysis	39
2.5.3.1. Sample preparation	39
2.5.3. 2.Total viable bacterial count (TVBC)	39
2.4.3. 3.Colony count of Coliform	40

2.5.3. 4.Horizontal method for the detection of <i>Salmonella</i>	
spp.	40
2.5.3. 4.1.Pre-enrichment	40
2.5.3. 4.2. Selective Enrichment	40
2.5.3. 4.3.Plating out and identification	40
6.Blood constituents	41
7. Gene expression studies	41
7.1. RNA extraction and quantitative real-time PCR	41
8. Statistical analysis	43
RESULTS AND DISCUSSION	45
1.physiological measurements	45
2.The productive performance under heat stress of (Ross	
and Indian River) strains	45
2.1. Body weight	45
2.2. Body weight gain	46
2.3. Heat measurements	48
2.3.1. Respiratory rate	48
2.3.2. Rectal temperature	48
2.4. Body measurements	49
2.5. Feed consumption and conversion retio	50
2.5.1. Carcass traits	54
2. Meat quality	58
3- blood parameter	60
4.Gene expression	63
4.1. Expression levels of Myostatin gene	63
5. Mortality rate	65
SUMMARY AND CONCLUSION	67
1.Heat measurements	67
1.1.Respiratory rate	67
1.2. Rectal temperature	67
2. Body weight	67
3. body weight gain	67

4. Body measurements	68
5. carcass traits under heat stress	68
6. Meat quality	68
7- feed consumption	68
8- blood parameter	69
9. Gene expression	69
REFERENCES	70

LIST OF TABLES

Table		Page
No.		
(1)	Numbers strains and classification groups	28
(2)	Program heat stress	29
(3)	The composition and calculated chemical analysis of	
	the experimental diets	29
(4)	The Sequence of primers used in this study	43
(5)	Means ±SE of effect of strains, treatment and their	
	interaction on body weight (g) for Ross and Indian	
	River strain at different ages.	46
(6)	Means ±SE of effect of strains, treatment and their	
	interaction on of body weight gain for Ross and	
	Indain River strains	48
(7)	Means ±SE of effect of strains, treatment and their	
	interaction of heat stress measurements for Ross and	
	Indian River strains (35 day).	50
(8)	Means ±SE of effect of strains, treatment and their	
	interaction on body measurements during bleeding	
	period for Ross and Indian River strains.	51
(9)	Feed consumption ratio of broiler chicks Ross and	
	Indian river Strains as affected heat stress.	53
(10)	Body weight gain ratio of broiler chicks Ross and	
	Indian river Strains as affected heat stress.	54
(11)	Feed conversion ratio of broiler chicks Ross and	
	Indian river Strains as affected heat stress.	54
(12)	Means ±SE of effect of strains, treatment and their	
	interaction on organs weight for Ross and Indian	
	River strains (35 day).	57

(13)	Means ±SE of effect of strains, treatment and their	
	interaction on of meat quality for Ross and Indian	
	River strains (35 day).	61
(14)	Means ±SE of effect of strains, treatment and their	
	interaction on of meat quality(microbiology) for Ross and	
	Indian River strains (35 day)	62
(15)	Blood parameters of broiler chicks as affected by	
	strains and heat treatment.	64
(16)	The mRNA expression level of the myostatin gene in	
	Ross and Indian River strains subjected to normal	
	and heat treatments. Significantly (P ≤0.05). **	
	$p \le 0.01$.* $p \le 0.05$ and NS, not significant.	67