

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Evaluation of Macular and Choroidal Thickness Measurements in HCV Patients taking Recent Anti Viral Hepatitis C Drug (Daclatasvir /Sofosbuvir Combination)

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

Вy

Doaa Saad Yusuf Elzankaly

M.B., B.Ch
Faculty of Medicine, Alexandria University

Under Supervision of

Prof. Dr. Abd El-Rahman Gaber Salman

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Prof. Dr. Tarek Mohamed Yousif

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Dr. Walid Mohamed Abd El-Raouf El-Zawahry

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Walaa Mohamed Hahsem

Lecturer of Internal Medicine Faculty of Medicine, Ain Shams University

Ophthalmology Department
Faculty of Medicine
Ain Shams University
Cairo, Egypt
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Abd El-Rahman Gaber Salman, Professor of Ophthalmology Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Tarek Mohamed Yousif, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Walid Mohamed Abd El-Raouf El-Zawahry, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Walaa Mohamed Hahsem, Lecturer of Internal Medicine Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

Doga Saad

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy of the Retina	4
Choronic Hepatitis C	10
Optical Coherence Tomography (OCT)	18
Patients and Methods	25
Results	34
Discussion	41
Conclusion	46
Summary	44
Recommendations	47
References	48
Arabic Summary	

List of Abbreviations

Abb.	Full term
BCVA	. Best corrected visual acuity
	. Central foveal thickness
	. Chronic hepatitis C
	Direct acting antiviral agents
DAC	
	Enhanced Depth optical coherence
	tomography
EOT	. End of treatment
ETDRS	. Early Treatment Diabetic Retinopathy Study
FDA	. Food and Drug Administration
GCL	ganglion cell layer
H.E	. Hepatic encephalopathy
HCC	. hepatocellular carcinoma
HCV	. Hepatitis C viral
INF	. Interferon
INL	. Inner nuclear layer
IOP	. Intraocular pressure
IPL	. Inner plxiform layer
LED	. Ledipasvir
NCCVH	. National Committee for Control of Viral
	Hepatitis
NFL	. Nerve fiber layer
NS5A	. Non structural Protein 5 A
NS5B	. Non structural Protein 5 B
OCT	optical coherence tomography
OMB	. Ombitasvir
ORF	open reading frame
PAR	. Paritaprevir

List of Abbreviations Cont...

Abb.	Full term
DDV	Diberrini
KBV	Ribavirin
RPE	retinal pigment epithelium
SBP	spontaneous bacterial peritonitis
SD-OCT.	spectral-domain optical coherence tomography
SIM	Simeprevir
SOF	Sofosbuvir
SS-OCT	Swept source optical coherence tomography
SVR	Sustained virological response
TD	Time domain

List of Tables

Table No	. Title	Page No.
Table (1):	Modified child-pugh score	28
Table (2):	Interpretation.	28
Table (3):	Pretreatment and post treatment lattests of the studied subjects	· ·
Table (4):	Comparison of BCVA before and at EO	Γ36
Table (5):	Comparison of Macular thickness measurements before and at EOT	
Table (6):	Comparison of subfoveal choroidal to measurements before and at EOT	
Table (7):	Comparison of choroidal to measurements 2Mm temporal to fove and and at EOT.	ea before
Table (8):	Comparison between choroidal measurements before and after tregarding 2Mm nasal to fovea.	treatment

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Vertical section of layers of the retina. Modified schematic drawing of a m section of the macula	icroscopic
Figure (3):	This drawing shows the anatoclinical areas of the macula	omic and
Figure (4):	A. Schematic of the layers of the B. section of the outer Retina and co	
Figure (5):	Assessment of chronic hepatitis patients according to the Egypt model of care	ian HCV
Figure (6):	The principle of the OCT machine	
Figure (7):	EDI of a normal eye	
Figure (8):	Swept source OCT scan of a norm	
3	showing chorio-scleral interface without EDI	distinctly
Figure (9):	An example of how retinal capilla and choriocapillaris images are gen OCTA	nerated by
Figure (10):	Spectral domain OCT	
Figure (11):	Image of (SD- OCT) macular map s	
Figure (12):	Print out of (SD-OCT) macular line	
Figure (13):	Image of Central macular thickness	
	OCT) macular radial scan	•
Figure (14):	Print out of (SD- OCT) macular mof one of our patients. Centre thickness was 262 um and 262 uright and the left eye respectively	al foveal im in the
Figure (15):	Print out of (SD- OCT) macular line one of our patients. subfoveal thickness was 249 um and 224 uright and the left eye respectively	choroidal ım in the

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Print out of (SD- OCT) macular of one of our patients. Choroids mm temporal to fovea was 18	al thickness 2
Figure (17):	eye Print out of (SD- OCT) macular of one of our patients. Choroid mm nasal to fovea was 176 in the	r radial image al thickness 2

Introduction

Tepatitis C viral (HCV) infection is a major problem In Egypt, most of HCV infections persist for life, leading to chronic hepatitis. The major cause of death is primarily associated with liver cirrhosis as well as other conditions including liver cell failure, hematemesis from esophageal varices, hepatic encephalopathy and hepatocellular carcinoma (Maria et al., 2014).

The developments for the treatment of HCV infection have led to the potential eradication of the virus and a cure for infected patients. Direct-acting antiviral agents (DAAs) are specific to the HCV particle and aim to inhibit viral RNA replication by attacking some of the several enzymes involved in the RNA replication process, thereby inhibiting viral replication and causing viral eradication. Combining medications that have different targets of action with synergistic antiviral effects will hopefully lessen the burden of resistance to antivirals (Muir, 2014).

In July 2015, the FDA approved daclatasvir (Daklinza, Bristol-Myers Squibb) for use with sofosbuvir (Sovaldi, Gilead Sciences) as the first 12-week, all-oral treatment option for patients with chronic HCV (*Daklinza*, 2016)

Optical coherence tomography (OCT) is a non-contact, light-based imaging modality providing new high-resolution