

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Study of The Relation between 8_Hydroxy-2'deoxyguanosin (8_OHDG) and Suspicious Thyroid nodule in a Patients with Multinodular Goiter

Thesis

Submitted for partial fulfillment of Master Degree in Endocrinology and Metabolism

Faculty of Medicine, Ain Shams University

Presented by

Ruwida Fouli Farag Mohamed Eljazwi

(M.B., B.Ch, Libyn International Medical University)

Supervised by

Prof. Dr./ Nermin Ahmed Sheriba

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Prof. Dr./ Maram Mohamed Maher Mahdy

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr./ Dina Ahmed Marawan

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Nermin Ahmed Sheriba**, Professor of Internal Medicine and Endocrinology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Prof. Maram Mohamed Maher Mahdy**, Assistant professor of Internal Medicine and Endocrinology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Dina Ahmed Marawan**, Lecturer of Internal Medicine and Endocrinology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

🖎 Ruwaida Fouli Farag Mohamed Eljazwi

List of Contents

Subject Page .	No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Multinodular Goiter	5
8-hydroxy-2'-deoxyguanosine (8_OHdG) Marker and its association with Cancer	. 52
8_OHDG marker in patients with Multinodular Goiter	. 67
Subjects and Methods	. 82
Results	. 91
Discussion	111
Summary	125
Conclusions	127
Recommendations	128
References	129
Arabic Summary	. —

List of Abbreviations

Abbr. Full-term

AFTNs : Autonomously functioning thyroid nodules

ATA : American Thyroid Association

cAMP : cyclic adenosine monophosphate

CT : Computed tomography

EGF : Epidermal growth factor

ETA : European thyroid association

FNA : Fine needle aspiration

: Fine needle aspiration biopsy **FNAB**

GCMS : Gas chromatography with mass spectrometry

GC-MS : Gas-chromatography-massspectrometry

GPXs : Glutathione peroxidases H&E : Hematoxylin and eosin

: Hydrogen peroxide **H2O2**

hOGG1 : 8-oxoguanine DNA glycosylase

HPLC : High-performance liquid chromatography

IGF-I : Insulin-like growth factor-1

MNG : Multinodular goiters

MRI : Magnetic resonance imaging

mRNA : Messenger ribonucleic acid

: Medullary thyroid carcinoma **MTNS** : McGill Thyroid Nodule Score

NIS : Na+/I- symporter

MTC

: Positron emission tomography PET

PTC : Papillary thyroid carcinoma

ROS : Reactive oxygen species

SD : Standard deviation

SOD : Superoxide dismutase

Tg: Thyroglobulin

TGF-ß1 : Transforming growth factor

TIRADS: Thyroid Imaging Reporting and Data System

TPO: Thyroid peroxidase

TSH: Thyroid stimulating hormone

8-OHDG : 8_Hydroxy-2'-deoxyguanosin

8-OHGua: C8-hydroxyguanine

List of Tables

Table No.	Title	Page No.
Table (1):	The various types of thyroid nodule	es9
Table (2):	ACR/EU - TIRADS differences terms of classification of nodules	
Table (3):	ACR/EU - TIRADS differences terms of management of nodules risk category.	by
Table (4):	Management of Nodules	48
Table (5):	Application 8_hydroxydeoxyguanosine as poten biomarker for various clinical disea	
Table (6):	Demographic and laboratory data Group 1 (MNG patients)	
Table (7):	Demographic and laboratory data Group 2 (Healthy control)	
Table (8):	Comparison between Group 1 (Magnetients) and Group 2 (Head control) as regards age	lthy
Table (9):	Comparison between Group 1 (Magnetients) and Group 2 (Head control) as regards Sex	lthy
Table (10):	Comparison between Group 1 (Magnetients) and Group 2 (Head control) as regards Thyroid pro (TSH, fT3 and fT4)	lthy ofile

Table (11):	Comparison between Group 1 (MNG patients) and Group 2 (Healthy control) as regards 8_OHDG98
Table (12):	Comparison between (Group IA) patients with MNG without malignancy after FNA and (Group IB) patients with malignancy As regards diagnostic and libratory data
Table (13):	Comparison between sex and TIRADS score in patients group as regards 8_OHDG. 103
Table (14):	Correlation between 8_OHDG and all variables (Age, TSH, fT3, fT4 and size of nodules) in all patients groups
Table (15):	The ROC curve between patients and controls as regard 8_OHDG 110

List of Figures

Figure No	. Title	Page No.
Figure (1):	Anatomy of thyroid gland	5
Figure (2):	Thyroid Gland. The thyroid gland is lo in the neck where it wraps around trachea.	d the
Figure (3):	Hypothesis for thyroid no transformation. The starting point for development of MNG is hyperplasia in by goitrogenic stimuli (e.g., ideficiency)	or the duced iodine
Figure (4):	ACR TI-RADS criteria, levels recommendations	
Figure (5):	The 2017 ACR-TIRADS system	32
Figure (6):	EU-TIRADS algorithm for classificati nodules and FNA decision-making	
Figure (7):	Technetium-99m (99mTc) thyroid scar large, nontoxic multinodular goiter. Mu cold and hot nodules are observed i enlarged thyroid gland	ultiple in the
Figure (8):	Histologic pattern of a mildly different follicular thyroid carcinoma (250 X)	ntiated40
Figure (9):`Dia	gnostic sequence and therapeutic decision managing a patient with an apparent nodule of the thyroid	ons in single
Figure (10):	Formation of 8_OHDG	53
Figure (11):	Toxins mediated alterations in structure and the mechanis of DNA dan	

Figure (12):	The classification of thyroid nodules on the basis of results from clonality studies70
Figure (13):	The two concepts of thyroid nodular transformation
Figure (14):	Factors that might contribute to the development of thyroid tumors
Figure (15):	The figure shows the key molecules involved in those parts of thyroid hormone synthesis which—in conditions of iodine and most probably also selenium deficiency—lead to oxidative stress, DNA damage and possibly mutagenesis. 79
Figure (16):	Comparison between Group 1 (MNG patients) and Group 2 (Healthy control) as regarding 8_OHDG level98
Figure (17):	Comparing the two studied groups as regarding 8OHDG level
Figure (18):	Show Thyroid nodule size showing high significant difference of thyroid nodule size between Group 1B (MNG with malignancy)102
Figure (19):	Shows that there is no statistically significant difference between studied subgroups regarding TIRADS classification
Figure (20):	Correlation between 8_OHDG and size of nodules in all patients group109
Figure (21):	The Cutpoint and Sensitivity and Specificity110

Introduction

Thyroid nodules are a common clinical problem affecting numerous individuals worldwide. The prevalence of palpable thyroid nodules is approximately 5% among women and 1% among men living in iodine-sufficient parts of the world (Haugen et al., 2016).

High-resolution ultrasound can detect thyroid nodules in 19%–68% of randomly selected individuals, with higher frequencies in women and the elderly (**Tan and Gharib. 1997**).

Although the majority of thyroid nodules are benign, certain risk factors, such as a solid nodule, age over 70 years or below 20 years, a history of previous head and neck irradiation, male sex, and a history of familial thyroid cancer or multiple endocrine neoplasia syndrome, may increase the risk of developing cancerous thyroid nodules (**Arora et al., 2008**).

Multinodular goiters (MNG) defined as an enlarged thyroid gland with multiple nodules, have historically been thought of as a benign condition with a low risk of associated malignancy, and may be present in up to 4% of the population in iodine sufficient countries. However, recent studies have suggested that the incidence of malignancy in patients with MNG approaches that of patients with a solitary thyroid nodule (Gandolfi et al., 2004).

Pre-operative diagnosis of thyroid cancer is commonly done through fine-needle aspiration (FNA) While it remains one of the best pre-operative methods of determining nodule malignancy, large studies have found FNAs to be non-diagnostic in up to 25% of the cases (Rago et al., 2010). Furthermore, the presence of multiple nodules can present difficulties in adequately evaluating the entire thyroid because sampling every nodule is not practical (Ríos et al., 2004). The presence of multiple nodules also creates challenges in following individual nodules for growth overtime, which is an additional factor that is used to increase the suspicion for malignancy.

Early molecular conditions for nodular and tumor transformation in the thyroid gland consist of a sequence of molecular events that include oxidative stress and DNA damage as the trigger for somatic mutations. The oxidative burden is already detectable in the normal thyroid gland and is likely to be linked to hormone synthesis and H2O2 production (Guth et al., 2009). It has been suggested that oxidative stress can cause DNA damage followed by an increase in the spontaneous mutation rate, which is a platform for tumor genesis (Levine and Sistrunk. 2018).