

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of Radiation Exposure and Image Quality in Congenital Catheterization Laboratory; A Single Centre Comparative Study Using Different Acquisition Modes

THESIS

FOR PARTIAL FULFILMENT OF
MASTERS DEGREE IN CARDIOLOGY

Submitted by

Mahmoud Ahmed Abd El-Hamid Ahmed

MBBCH Ain Shams University

Under supervision of

Prof. Dr/ Ghada Samir EL-Shahed

Professor of Cardiology

Faculty of medicine – Ain Shams University

Dr/ Yasmin Abdel RazekEsmail

Associate professor of Cardiology

Faculty of medicine –Ain Shams University

Dr/ Amr Mansour Mohamed Zaky

Lecturer of Cardiology

Faculty of medicine -Ain Shams University

Faculty of Medicine
Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work, My deepest gratitude to my supervisor, Prof. Dr.Ghada Samir EL-Shahed, Professor of Cardiology, Faculty of Medicine - Ain-Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great appreciation and thanks to Dr.Yasmin Abdel Razek Esmail and Dr.Amr Mansour Mohamed Zaky, Lecturers of Cardiology, Faculty of Medicine - Ain-Shams University, for their meticulous supervision, and their patience in reviewing and correcting this work.

Special thanks to operators, technicians and nurses in cardiology department, ain shams university, who help me all times in this thesis.

Finally thanks to my Parents for their mercy, love and great support.

Mahmoud Ahmed Abd El-Hamid Ahmed

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	4
Review of Literature	
Radiation hazards to patients and operators in catheterization	
Radiation reduction in catheterization lab and	•
Patients and Methods	27
Results	32
Discussion	47
Conclusion	54
Recommendations	55
Limitation	56
Summary	57
References	59
Arabic Summary	<u></u>

Tist of Tables

Table No.	Title	Page No.
Table (1):	Patient's demographic dat	a in study groups 32
Table (2):	Incidence of previous radia the study Groups	-
Table (3):	Radiation's parameters in	the study groups 34
Table (4):	Comparison analysis betw groups as regarded radiati	v
Table (5):	Radiation's parameters in procedures of the study gr	O
Table (6):	Comparison analysis betw procedures of each two stu regarded radiation's parar	dy groups as
Table (7):	Radiation's parameters in procedures of the study gr	
Table (8):	Comparison analysis betwee procedures of each two studies regarded radiation's param	ly groups as

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Relationship between	~ -
	regard total air kemra	
Figure (2):	Relationship between	
	regard air kemra produ	ct35
Figure (3):	Relationship between	three groups as
	regard fluoroscopy time	e36
Figure (4):	Relationship between	three groups as
	regard contrast volume.	
Figure (5):	Relationship between	
J	regard image quality	~ -
Figure (6):	Relationship betwe	
	procedures in three gro	
		41
Figure (7):	Relationship betwe	
g (1/1	procedures in three gr	
		42
Figure (8):	Relationship betwe	
riguic (o).	procedures in three	
		42
Figure (9):	Relationship betwe	en intervention
riguic (b).		
	procedures in three	45
Figures (10).		
Figure (10):	Relationship betwee	
	procedures in three	
	0 1	43
Figure (11):		ixed study group45
Figure (12):		ne study group45
Figure (13):	Cases distribution in flu	uro study group46

Tist of Abbreviations

Abb.	Full term
	.Automatic exposure control
<i>AK</i>	.Air kerma
ALARA	As low as reasonably achievable
<i>CHD</i>	. Congenital heart disease
<i>CM</i>	. Centimeter
<i>CM</i> ²	. Centimeter square
<i>CT</i>	. Computed tomography
<i>DAP</i>	.Dose area Product
DNA	.Deoxyribonuncleic acid
<i>Fps</i>	.Frames per second
<i>Gy</i>	. Grey
$Gy.cm^2$. Grey per centimeter square
<i>IQR</i>	.The interquartile range
<i>KG</i>	.Kilo gram
<i>M</i> ²	··Meter square
<i>mGy</i>	.Milligrey
$mGycm^2$.MilliGray per centimeter square min.
Min	. Minute
<i>MRI</i>	.Magnetic resonance imaging
mSv	.Millisievert
<i>N</i>	.Number of cases
<i>Y</i>	. Year

Introduction

Survival for patients with congenital heart disease (CHD) has improved dramatically over recent decades and more than 85% of people born with a heart defect are now expected to survive to adulthood. With more advanced technology and expert doctors the CHD intervention procedures become more advanced and complex with more time length and more radiation exposure(*Lang and Walker*, 2018).

Technological advances in percutaneous structural intervention, usually under fluoroscopy guidance, have allowed patients to avoid redo surgery or, in some cases, to avoid any conventional surgical intervention whatsoever. Many of these patients need multiple catheterization procedures, multiple multislice CT scan, chest x-ray pre-and post-operative, the risk of cumulative radiation form all these procedures with improvement of prognosis is gaining attention(*Lang and Walker*, 2018).

The radiation dose delivered to patients are approximately 10–20 times lower in the fluoroscopy mode than in the conventional cine angiography mode, the dose can be minimized by the appropriate utilization of stored fluoroscopy images or films at relatively lower doses. This method is known as fluoro angiography; however, this is on the expense of image quality with poorer spatial resolution(*Olcay et al., 2014*).

The adverse risks of radiation exposure may be described in terms of **stochastic** and **deterministic** effects. The development of malignancy due to radiation exposure is a stochastic risk(Olcay et al., 2014).

Developing a skin burn as a result of a prolonged radiation exposure is a deterministic effect. The **deterministic** effect is a dose-dependent direct health effect of radiation for which a threshold is believed to exist(Olcay et al., 2014).

Radiation exposure is usually described in terms of the following parameters:

1. Fluoroscopic time (min.):

This is the time during a procedure that fluoroscopy is used but does not include cine acquisition imaging. Therefore, considered alone, it tends to underestimate the total radiation dose received(Brindis et al., 2014).

2. Cumulative (total) air kerma (Gy):

The cumulative air kerma is a measure of x-ray energy delivered to air at the interventional reference point (15 cm from the center in the direction of the focal spot). This measurement has been closely associated with deterministic skin effects(Brindis et al., 2014).

3. <u>Dose-area product (Gy.cm2):</u>

This is the cumulative sum of the instantaneous air kerma and the x-ray field area. This monitors the patient dose burden and is a good indicator of stochastic effects (Brindis et al., 2014).

AIM OF THE WORK

The aim of our study is:

o study the effect of lowering radiation dose by using a fluoro angiography on image quality in pediatric cardiac catheterization.