سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Cairo University Faculty Of Engineering

EXPERIMENTAL INVESTIGATION OF TURBULENT HEATED FLOW IN AN ANNULAR SECTOR DUCT

Presented By

Amr Yehia Abdo El Sayed
B.Sc. in mechanical power engineering

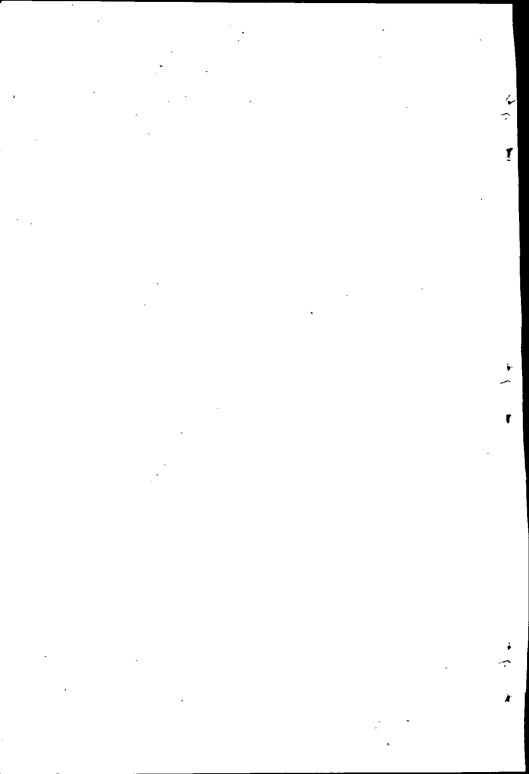
In partial fulfillment of master of science degree in mechanical engineering

SUPERVISED BY;

PROF. A.S. EL ASFOURI

Mechanical Power Depart.

Faculty of Engineering


Cairo University

PROF. A.S. HANAFI
Mechanical Power Depart.
Faculty of Engineering
Cairo University

ASSO.PROF. M.A. RIZK Mechanical Power Depart. Faculty of Engineering Cairo University

1996

(N

ACKNOWLEDGEMENTS


The author would like to thank his supervisors, Prof. Ahmed El-Asfouri, Prof. Abdalla Hanafi and Dr. Moustafa Rizk, for their precious guidance and sincere help through the completion of the thesis.

Special thanks for Prof. Mohsen Abou-Ellail for his great help.

The author would like to express his deep gratitude and appreciation to his family in general and specially to his parents, and he would like to offer this work to them.

The author would like to thank all the Cairo University, Faculty Of Engineering, Mechanical Power Department staff because of their contribution at various times to the successful completion of this work and till now.

Special acknowledge to "The Egyptian company of iron and steel" because of its help in the manufacturing of the test rig duct, which has a very difficult geometrical shape.

ABSTRACT

The continuing interest in compact heat exchangers has created the need for studying the effect of heat transfer parameters for different passage shapes. It has been recognized that generally circular tubes results are not applicable to non-circular passages even when the hydraulic diameter (D_h) is used as the characteristic dimension, therefore, design data should be generated for each passage shape individually. The new flow passage shape under investigation in the present work is the annular sector duct which is a non circular passage.

The major difference between the annular sector duct and non circular ducts of other geometry is that, the annular sector duct has both concave and convex boundaries. The combination of these combined boundaries would significantly affect the secondary flow pattern in the centrifugal force field.

In the current research, an annular sector duct of diameter ratio of 0.5 and a sector angle of 60 degrees is studied experimentally. The experimental test rig was of total length of 113 D_h , designed to have a starting unheated length of 65 D_h in order to ensure hydrodynamically fully developed flow in the downstream passage. It is followed by 48 D_h heated length to ensure thermally fully developed flow at the exit of the test section.

Twelve experimental runs were performed for measuring wall temperature, air mixing cup temperature and air velocity at several locations along the test section. Fluid velocity was measured at three axial locations, namely, at lengths equal to 48 D_h , 65 D_h (before the entrance to the test section) and 113 D_h (at the exit of the test section).

Temperatures were measured at lengths equal to $66 D_h$, $70 D_h$, $76 D_h$, $81 D_h$, $86 D_h$, $92 D_h$, $97 D_h$, $103 D_h$ and $113 D_h$ from the beginning of the annular sector duct.

Experimental runs correspond to Reynolds number, 22875, 35329, 37834, 44404, 49065, 54631, 59424, 62965, 66086, 66965, 68015 and 73766. Results were carried out to obtain relation between local or average Nusselt numbers and Reynolds number.

The average Nusselt number is correlated with Reynolds number according to the relation;

$$\overline{N}_{Nu} = 0.055*(N_{Re})^{0.71}$$

Comparison between heat transfer characteristics in annular sector duct and that in other shaped ducts (such as circular, triangular, rectangular, square and trapezoidal ducts) indicated an improvement in heat transfer characteristics, even the heat transfer has been improved in annular sector ducts by an average value of 50% approximately more than the annular duct passage shape.

The resulting increase in heat transfer from the annular duct could be explained as a result of two main phenomena, The first is due to the corner regions, those are resulted in the new shape, which produce secondary flows, converting part of the main flow velocity to eddies which improve the heat transfer between the duct wall and the fluid, and the second is due to that the partitions act as fins to which the heat is conducted, and then convected to the fluid. The later mechanism improves the heat transfer between the heated wall and the flowing fluid, especially at low fluid velocities.

LIST OF CONTENTS

			Page
	Acknowledgements		ii
	Abstract		iii
	List of Contents		v
	List of Figures		vii
	Nomenclature		ix
	Chapter 1Introduction		
	1.1. Motivation		1
	1.2. Objective of the present w	vork	3
	Chapter 2 Literature Revi	<u>ew</u>	
	2.1. Introduction		4
	2.2. Review of previous exper	imental work	5
	2.3. Review of theoretical wor	rk	9
	2.4. Conclusion		12
	Chapter 3 Experimental V	<u>Work</u>	
	3.1. The test rig		13
	3.2. Test section		16
	3.2.1. General descripti	ion	16
3.2.2. Measuring locations			16
		anism	20

		Page
3.3. Ma	3.3. Manufacturing of the test rig	
3	3.3.1. Annular sector duct	
. 3	.3.2. Heater, guard heater and insulation	28
Chapter 4	Results, Discussion and Conclusion	
4.1. Inti	roduction	32
4.2. Exp	perimental results	33
4	.2.1. Static pressure distribution	33
4	.2.2. Air velocity profiles	36
4	.2.3. Air temperature profiles	36
4.	.2.4. Average Nusselt number	36
4.	.2.5. Local Nusselt number	55
4.	.2.6. Local heat transfer coefficient	59
4.	2.7. Air mixing cup temperature	61
4.	2.8. Heated wall temperature	63
4.3. Cor	nclusion	67
4.4. Rec	ommendation for future work	68
References		70
Appendix -A	Calibration of Orifice meter	75
Appendix -B	Calibration of Three hole probe	81
Appendix -C	Experimental Error Analysis	88

LIST OF FIGURES

Figure	Page
3.1 Experimental test rig	14
3.2 Cross section of the flow channel	15
3.3 Heater and insulation construction	17
3.4 Measuring stations along the test section	18
3.5 Static pressure tap and connection	22
3.6 Static pressure tap locations along the test rig	23
3.7 Selector switch	24
t to the state of	25
	27
3.9 Traversing mechanism 3.10 Lead layer	29
	31
- 1 41 41 41 - Familiary Daynolds number range	34
	35
4.2 Static pressure distribution for high Reynolds number range	37-39
4.3 - 4.14 Velocity contours for different Reynolds number	40-5
4.15 - 4.62 Temperature contours for different Reynolds number	52
4.63 Comparison of average Nusselt number for different duct geometry	
4.64 Local Nusselt number for different Reynolds number	50
4.65 Comparison of local Nusselt number for different duct geometry 1	5'

Figu	re	Page
4.66	Comparison of local Nusselt number for different duct geometry 2	58
4.67	Local heat transfer coefficient for different Reynolds number	60
4.68	Experimental mesh for velocity and temperature profiles	62
4.69	Local fluid mixing cup temperature for different Reynolds number	64
4.70	Local heated wall temperature for different Reynolds number	65
4.71	Local difference between heated wall and fluid mixing cup temperatures	66
A .1	Orifice-meter construction	76
A.2	Pressure drop across the orifice plate for different average air velocity	79
A.3	Orifice-meter discharge coefficient for different Reynolds number	80
B.1	Three-hole probe construction	82
B.2	Variation of pressure on each hole of the probe with the attack angle	84
B.3	Variation of probe coefficients with the attack angle 1	86
R 4	Variation of probe coefficients with the attack angle 2	87