

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

One-Stage vs Two-Stage Brachiobasilic Arteriovenous Fistula with Superficialization of the Basilic Vein Regarding Patency and Failure Rates

A thesis submitted in partial fulfillment of the requirements for the master's degree in **general surgery**

By

Mostafa Usama Muhammad Lebda

Vascular surgery resident Al-Sahel Teaching Hospital

Supervised by

Dr. Yasser Muhammad Abd Alsamea

Assistant professor of general surgery Ain Shams University

Dr. Abdulrahman Muhammad Salem

Assistant professor of vascular surgery
Ain Shams University

Faculty of Medicine
Ain Shams University
2021

Acknowledgements

I would like to express my profound gratitude and appreciation to *Or. Wasser Muhammad Abd Alsamea*, Assistant Professor of General Surgery, Faculty of Medicine, Ain Shams University for his support, supervision, and kind care

I would like also to express my immense gratitude and respect to *Dr. Abdulrahman Muhammad Salem*, Assistant Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University for his continuous support, encouragement, and his effort to accomplish this work.

Special gratefulness and appreciation go to my family and colleagues who gave me their support and enthusiasm throughout this work.

Lastly, I would like to express my extreme appreciation to *Dr. Mehal* and *Dr. Alaa* for dedicating their effort and time to accomplish this work.

Contents

List of tablesIV
List of figures:IV
List of abbreviationsVIII
Introduction1
Aim of the work5
Review of literature5
• Anatomy6
Radiological investigations for assessment of arteriovenous fistulas
Complications of arteriovenous fistulas
Basilic vein transposition
Preoperative Evaluation and Operative Strategy46
• Complications of brachiobasilic fistulas 51
Patients And Methods
Results71
Discussion90
Conclusion
Summary
References 112

List of tables:

Table No.	Table Title	Page	
Table 1:	Comparison between both groups according demographics	_	75
Table 2:	Comparison between both groups according co-morbidities	_	75
Table 3:	Comparison between both groups according pre-operative brachial artery and basilic characteristics	vein	78
Table 4:	Comparison between both groups according the post-operative characteristics of the between tween.	asilic	80
Table 5:	Comparison between both groups according primary and secondary patency	_	81
Table 6:	Comparison between both groups according complications	_	86
Table 7:	Comparison between both groups according early post-operative pain	•	88
Table 8:	Comparison between both groups according to operative hospital stay	-	89
Table 9:	Comparison between both groups according time needed for first cannulation	_	90

List of figures:

Figure No	o. Figure Title Page
Figure 1:	Cross-section of the middle of the arm that shows the brachial artery, the median nerve and the basilic vein.
Figure 2:	Superficial venous system of the upper extremity
Figure 3:	Superficial and deep venous system of the upper extremity
Figure 4:	Central venous system of the neck and chest 19
Figure 5:	Grey scale appearance of basilic vein in the
	mid upper limb by duplex26
Figure 6:	Grey scale appearance of brachial artery and
	its vena comitans at the antecubital fossa by duplex
Figure 7:	(A) Duplex shows normal phasic flow withing the left subclavian vein (B) Duplex of the mid-right subclavian vein shows abnormal monophasic venous waveform consistent with proximal venous obstruction
Figure &	Juxta-anastomosis stenosis of the
rigure o:	arteriovenous fistula
Figure 9:	Transposed Brachiobasilic arteriovenous fistula (BBAVF)

List of figures (Cont...)

Figure No	o. Figure Title Pag	ie
Figure 10:	Longitudinal incision is made over the basilic	
	vein	59
Figure 11:	Dissection of the basilic vein and ligation of its	
	tributaries	59
Figure 12:	Dissection of a suitable length of the brachial	
	artery	60
Figure 13:	Heparinization of the basilic vein after	
	Ligation and transection of its distal end	60
Figure 14:	Creation of a tunnel for the basilic vein in the	
	lateral aspect of the arm	61
Figure 15:	Tunneling of the basilic vein and its	
	anastomosis with the brachial artery	61
Figure 16:	Insertion of a suction drain	62
Figure 17:	Suturing the subcutaneous tissue	62
Figure 18:	Closure of the skin incision	63
Figure 19:	Dissection of the brachial artery and the basilic	
_	vein	65
Figure 20:	Anastomosis between the brachial artery and	
_	the basilic vein	65
Figure 21:	Dissection of the basilic vein and ligation of its	
	tributaries	67
Figure 22:	Elevation of the basilic vein into the surgically	
	created flap between the deep fascia and the	
	subcutaneous tissue	67
Figure 23:	Suturing of the deep fascia	68
Figure 24:	Closure of the skin incision	68
Figure 25:	Gender distribution	72

List of figures (Cont...)

Figure No	o. Figure Title Pag	e
Figure 26:	Comparison between both groups according to co-morbidities	 76
Figure 27:	Comparison between both groups according to limb side	77
Figure 28:	Comparison between both groups according to pre-operative and 6 months post-operative mean diameter of the basilic vein	79
Figure 29:	Comparison between both groups according to primary and secondary patency	82
Figure 30:	Comparison between both groups according to overall complications	87
Figure 31:	Comparison between both groups according to different complications	87
Figure 32:	Comparison between both groups according to early post-operative pain	88
Figure 33:	Comparison between both groups according to peri-operative hospital stay	
Figure 34:	Comparison between both groups according to time needed for first cannulation	

List of abbreviations:

Abb.	Full meaning
AVF	Arteriovenous fistula
AVG	Arteriovenous graft
BBAVF	Brachiobasilic arteriovenous fistula
CE-MRA	Contrast-enhanced magnetic resonance angiography
CKD	Chronic kidney disease
CVOD	Central venous occlusive disease
CTA	Computed tomography angiography
CVC	Central venous catheter
ESRD	End-stage renal disease
HD	Hemodialysis
<i>IMN</i>	Ischemic monomelic neuropathy
NKF KDOQI	National Kidney Foundation's Kidney Disease Outcomes Quality Initiative
NSF	Nephrogenic systemic fibrosis
PTFE	Polytetrafluoroethylene
PSV	Peak systolic velocity
SD	Standard deviation
SVC	Superior vena cava
VA	Vascular access

Introduction

Safe, reliable, and durable vascular access is essential for successful hemodialysis. Long term patency rates demonstrate that native arteriovenous fistulas (AVFs) have the best outcome compared to other methods e.g., synthetic grafts and double lumen catheter. Autogenous AVF also has lowest cost and lowest infection rate. (1)(2)(3)

The patency rate of AVFs in most parts of the world is 60-70% in first year and 50-60% in second year. The primary failure rate of an AVF ranges between 50-54% during the first six months. (4)(5)

Ineffective AVF and its complicatios are among the most important problems of chronic kidney disease (CKD) patients. Some of the complications are thrombosis, infection, stenosis, aneurysm formation and distal limb ischemia. (6)

The decision of where to create the AVF can be helped by preoperative vascular mapping using ultrasound imaging which is expected to improve chances of creating an AVF that will likely mature into a useful dialysis vascular access. (7)(8)

Dagher was the first to describe the use of basilic vein to create an AVF in the upper arm between the end of the basilic vein and the side of the brachial artery to act as access for long term hemodialysis. Since then, the procedure has seen several changes and modifications. ⁽⁹⁾

The superficialization of the brachiobasilic AVF (BBAVF) can be achieved by one of two methods: (1) transposition technique where the entire length of basilic vein is mobilized and positioned anterolaterally under a subcutaneous flap or (2) the elevation technique, where the vein is elevated superficially without mobilization to the surgically created flap between the deep fascia and subcutaneous tissue in the arm. (10)

Currently, there are two usual methods of BBAVF creation: a one-stage or a two-stage operation. The one-stage procedure first creates an anastomosis between the basilic vein and the brachial artery, followed by either elevation or transposition of the basilic vein in one procedure. As a single procedure, one assumes a reduced risk of infection, as well as a decreased anesthetic risk. It is, however, an extensive dissection, which exposes patients with immature fistula to a bigger operation. (10)

In contrast, a two-stage procedure allows for the maturation of the basilic vein first. This process results in the basilic vein being more easily palpable, less liable to damage, and easier to be superficialized. This procedure does, however, increase costs and may result in increased infection and anesthetic risk because it exposes the patient to two procedures. (10)

Furthermore, the second procedure of fistula elevation is performed with the assumption that the fistula has matured; however, this assumption is flawed because the only method to determine its maturity is via cannulation. (10)

All the mentioned outcome definitions were in accordance with the Society for Vascular Surgery reporting guidelines and the North American Vascular Access Consortium guidelines. (11)(12)

Primary fistula failure is defined as immediate failure of the BBAVF within 72 hours of surgery, early or late dialysis suitability failure.

Primary patency is defined as the interval from the time of access creation to the first thrombosis occurring at access site, or any intervention to restore blood flow. Secondary patency is defined as the time from access creation until access abandonment and includes any interventional procedures to restore patency. (11)(12)(13)

A useful rule to define clinical maturation proposed by the National Kidney Foundation's Kidney Disease Outcomes Quality Initiative (NKF KDOQI) clinical practice guidelines for vascular access is the "rule of sixes," which says that a mature fistula should achieve a blood flow of at least 600 ml/min, a diameter of at least 6 mm, and a depth of 6 mm or less from the surface of the skin and this can be done by duplex. (14)