

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Can Surgical masks, N95 Respirator, and M3 mask Decrease your Oxygen or Cause CO2 Retention?

Thesis

Submitted for Partial Fulfillment of Master's Degree in **Chest Diseases**

By

Sara Sanad Fouad Hafez

M.B.B.Ch. Ain Shams University

Under Supervision of

Professor Yasser Mostafa Mohamed

Professor of Chest Diseases and Head of Chest Department Faculty of Medicine Ain Shams University

Dr. Maryam Ali Abdelkader

Assistant Professor of Chest Disease Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'd like to express my respectful thanks and profound gratitude to **Professor Yasser**Mostafa Mohamed, Head of Chest department,

Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Maryam Ali**Abdelkader, Assistant Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help, and great assistance throughout this work.

Sara Sanad

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
Arterial Blood Gases	4
Types of Masks	15
Patients and Methods	26
Results	32
Discussion	51
Summary	55
Conclusion	57
Recommendations	58
References	59
Arabic Summary	

Tist of Tables

Table No	o. Title	Page No.
Table 1:	Comparison between N95 Respira Surgical Mask	
Table 2:	Distribution of demographic chara among the studied subjects.	
Table 3:	Distribution of oxygen saturation and blood gases among the studied subjects masks	s without
Table 4:	Distribution of oxygen saturation and blood gases among the studied subjects surgical masks.	wearing
Table 5:	Distribution of oxygen saturation and blood gases among the studied subjects N95 Respirator	wearing
Table 6:	Distribution of oxygen saturation and blood gases among the studied subjects 3M mask	wearing
Table 7:	pH changes before and after wearin among the studied individuals	_
Table 8:	PaCO2 changes before and after wearing among the studied individuals	O
Table 9:	PaO2 changes before and after wearing among the studied individuals	-
Table 10:	HCO3 changes before and after wearing among the studied individuals	_
Table 11:	Oxygen saturation changes before a wearing masks among the studied indiv	
Table 12:	Relation between presence of hyperca wearing masks.	•

Tist of Tables cont...

Table No).	Tit	le		Pag	ge No	
Table 13:			presence		<i>v</i> 1		48
Table 14:	Relation	between		of s	ymptoms	and	

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	How to use mask	18
Figure 2:	How to wear and remove A N95 mask	properly 21
Figure 3:	3M mask (Elastomeric Respirator)	25
Figure 4:	RAPID Point® 500 Systems	27
Figure 5:	GEM Premier 3000	27
Figure 6:	Mean values of age among studied sub	ojects 33
Figure 7:	Distribution of studied subjects gender.	_
Figure 8:	Mean levels of ABG among studied without masks.	
Figure 9:	Mean levels of ABG among studied wearing surgical masks	
Figure 10:	Mean levels of ABG among studied wearing N95 Respirator	
Figure 11:	Mean levels of ABG among studied wearing 3M mask	~
Figure 12:	pH changes before and after wearing among the studied individuals	-
Figure 13:	PaCO2 changes before and after masks among the studied individuals.	_
Figure 14:	PaO2 changes before and after wearing among the studied individuals	•
Figure 15:	HCO3 changes before and after wearing among the studied individuals	•
Figure 16:	Oxygen saturation changes before a wearing masks among the studied ind	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 17:	Relation between presence of hypwearing masks	-
Figure 18:	Relation between presence of sy wearing masks	-

Tist of Abbreviations

Abb.	Full term
ABG	Arterial blood gases
ARDS	Acute respiratory distress syndrome HCO3 Serum bicarbonate
CDC	Centres for disease control and prevention
CO2	Carbon dioxide
COVID-19	Coronavirus disease 2019
DFHFR	Disposable filtering half-facepiece respirator
FDA	Food and Drug Administration
FFRs	Filtering facepiece respirators
FiO2	Fraction of inspired oxygen
ICU	Intensive Care Unit
NIOSH	National Institute for Occupational Safety and Health
O2	Oxygen
PaCo2	Partial pressure of carbon dioxide
PaO2	Partial pressure of oxygen
PPE	Personal protective equipment
SARS-COV-2	Severe acute respiratory syndrome Corona
USA	United states of America
V/Q	Ventilation /perfusion

On

Introduction

he outbreak of COVID-19 has brought about some changes to our way of life. As more is learned about the virus, cities and countries look to protect citizens and allow return to normal (*Dattel et al.*, 2020).

On March 11, 2020, the World Health Organization declared COVID-19 to be a global pandemic disease (*Organization*, 2021).

On April 3, 2020, the Centers for Disease Control and Prevention (CDC) in the United States recommended that individuals wear a face mask in public if they cannot distance at least six feet from others, to help prevent the transmission of COVID-19 (*Hauck et al.*, 2020; CDC, 2020).

During respiration, a gas exchange occurs when oxygen is inhaled and absorbed into the body and carbon dioxide (CO2) is exhaled. When exhaling into a mask, there is a potential to inhale a greater amount of carbon dioxide, due to the exhaled carbon dioxide being trapped between the face and mask. One symptom of an excess of carbon dioxide in the blood, or hypercapnia, is fatigue (*Dattel et al.*, 2020).

We've all been wearing masks to help prevent the spread of the coronavirus. The FDA described a surgical mask as a "loose-fitting, disposable device that creates a physical barrier between the mouth and nose of the wearer and potential contaminants in the immediate environment," and N95 respirator as a "respiratory protective device designed to achieve a very close facial fit and very efficient filtration of airborne particles (Food and Drug Administration, 2020).

AIM OF THE WORK

To know whether Masks affect Oxygen and carbon dioxide level.