

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Department: Mathematics

Estimation of Stress-Strength Reliability for Some General Bivariate Distributions

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in Mathematical Statistics

Ву

Student name/ Dina Ahmed Mohamed Abd El-Razik

To

Department: Mathematics

Faculty of Science - Ain Shams University

Supervised by

Prof. Dr. Nahed Abd El Salam

Mokhlis

Emeritus Professor of Mathematical Statistics-Department of Mathematics, Faculty of Science, Ain Shams University

Dr. Sohair Khames Khames Gomaa

Lecturer of Pure Mathematics-Department of Mathematics, Faculty of Women, Ain Shams University

Year (2021)

نموذج بيانات منح درجة قسم: الرياضيات

Title Page

Name: Dina Ahmed Mohamed Abd El-Razik

Degree: Master of Science in Mathematical Statistics

Department: Department of Mathematics

Faculty: Faculty of Science

University: Ain Shams University

Graduation Year: 2015

Grant Year: 2021

Acknowledgements

First of all, all thanks to **Allah** for giving me strength, patience, and knowledge to bring this thesis.

Second, I pay my sincere gratitude to my supervisors; **Prof. Dr. Nahed Abd El Salam Mokhlis** for her continuous support, patience, guidance, valuable suggestions and the amount of time she spent with me discussing the results the discussions with her were consistently productive and **Dr. Sohair Khames Gomaa** for her continuous help, support, guidance and encouragement to me. This work would not have been conceivable without your efforts. I'm extremely thankful.

Third, I would like to thank **my mother** for her infinite love and support. **My father**, I wish you were still here so I could make you proud and let you know how much I love you. I will never forget you and your beautiful, kind words always in my mind. God bless your soul.

I should not forget to thank the kindest, smartest and best brother in the world **Abd EI-Rahman** thank you for your encouragement I love you and my brother **Mohamed** thank you for being in my life. My dear cousins **Omnia**, **Mustafa** and **Hadeer** I thank you for your continued love, support and belief in me.

Last but not least, I would like to thank my best friends **Aya**, **Samia**, **Yasmin** and **Hamda** who kept encouraging me to get this work done, thank you for believing in me without you, it was so hard.

Contents

Abstract		ı
List of Abbreviations List of Tables		iii iv
Published Papers		vi
Summary	1	vii
1. Basic	Concepts and Literature Review	
1.1.	Introduction	1
1.2.	Reliability	1
1.2	.1.Reliability Function (Survival Function)	2
1.2.2.Hazard Rate Function		2
1.2	.3.Cumulative Hazard Rate Function	3
1.3.	The Stress-Strength Models	4
1.3	.1.Examples of the Stress-Strength Model	5
1.3	1.3.2.Formulas of R	
1.4.	Point Estimation	8
1.4	.1.Properties Of Point Estimation	9
1.4	.2.Non-Bayesian Point Estimation	11
1.4	.3.Bayesian Estimation	14
1.5.	Kolmogorov-Smirnov Goodness-of-Fit Test (K-S test)	18
1.6.	Akaike and Bayesian Information Criterion	19
1.7.	Copulas	20
1.8.	Order Statistics	24
1.9.	Censoring Schemes	27
1.9.1.Type I Censoring		27

1.9.2	2.Type II Censoring	28
1.10.	Literature Review	30
2. The Fa	rlie-Gumbel-Morgenstern Families	
2.1.	Introduction	35
2.2.	The Bivariate FGM Distributions	36
2.2.	1.The Kendall's Tau coefficient Of FGM Family	37
2.2.2	2.Applications	38
2.3.	General Exponential Form (Family)	39
2.4.	General Inverse Exponential Form (Family)	43
2.5.	The Proposed Models	46
2.5.	1. The Bivariate General Exponential FGM Model (BGE-FGM)	46
2.5.2	2. The Bivariate General Inverse Exponential FGM Model	47
	(BGI-FGM)	
2.5.	3.Mixed Bivariate General Exponential-General Inverse	47
	Exponential FGM Model (BGE-I-FGM)	
2.5.4	4. Mixed Bivariate General Inverse Exponential – General	48
	Exponential FGM Model (BGI-E-FGM)	
2.6.	The Stress-Strength Reliability Based On FGM Distribution	48
3. Inferen	ce for Stress-Strength Model Based on the BGE-FGM	
Distribu	utions	
3.1.	Introduction	51
3.2.	Stress-Strength Reliability, R (BGE-FGM)	52
3.2.	1.The First Case, A ₁	53
3.2.2	2.The Second Case, A ₂	56
3.2.	3. The Third Case, A ₃	60
3.3.	Classical Point Estimation of R	63
3.3.	1.The First Case, A ₁	64

3.3	3.2.The Second Case, A ₂	67
3.3	3.3.The Third Case, A ₃	69
3.4.	Bayesian Estimation of R	71
3.4	1.1.The First Case: A ₁	71
3.4	1.2.The Second Case, A ₂	73
3.4	1.3.The Third Case, A ₃	74
3.5.	Numerical Illustration	76
3.6.	Conclusion	82
4. Infere	nce for Stress-Strength Model Based on the BGI-	FGM
Distrib	butions	
4.1. Intr	roduction	85
4.2. Str	ess-Strength Reliability, R (BGI-FGM)	86
4.2	2.1.The First Case, B ₁	87
4.2	$2.2.$ The Second Case, B_2	90
4.2	2.3. The Third Case, B ₃	93
4.3. Cla	assical Point Estimation of R	95
4.3	3.1.The First Case, B ₁	96
4.3	$B.2.$ The Second Case, B_2	98
4.3	3.3.The Third Case, B ₃	100
4.4. Bay	yesian Estimation of R	102
4.4	1.1.The First Case, B ₁	102
4.4	1.2.The Second Case, B ₂	104
4.4	1.3. The Third Case, B ₃	105
4.5. Nu	merical Illustration	106
4.5	5.1.Case B ₁	106
4.5	5.2.Case B ₂	109
4.5	5.3.Case B ₃	111

4.6. Real Life Data	
4.6.1. Illustration of Cases A ₁ and B ₁	113
4.6.2. Illustration of Cases A_2 and B_2	115
4.7. Conclusion	117
5. Inference for R Based on BGE-I-FGM and BGI-E-FGM	
Distributions	
5.1. Introduction	119
5.2. Stress-Strength Reliability, R (BGE-I-FGM and BGI.E-FGM)	120
5.3. Estimation of R	125
5.3.1.Non Bayesian Estimator of R	125
5.3.2.Bayesian Estimator of R	127
5.4. Numerical Illustration	129
5.5. Real Life Data	133
5.6. Conclusion	136
References	137

Abstract

Dina Ahmed Mohamed Abd El-Razik. Estimation of Stress-Strength Reliability for Some General Bivariate Distributions. Degree Master of Science in Mathematical Statistics. Mathematics Department, Faculty of Science, Ain Shams University, 2021.

The main objective of this thesis is the point estimation of a stress-strength model, $R = (X_1 > X_2)$, in two cases: the first case when X_1 and X_2 are dependent variables with marginal distribution functions having the same forms of distribution general exponential or general inverse exponential forms. The second case is when X_1 and X_2 are dependent variables with marginal distribution functions having different forms of distribution general exponential and general inverse exponential forms or vice versa. Different point estimators are obtained by different methods which can be classified into two main methods, the classical point estimation method and the Bayesian method. The estimation is performed based on complete sample and double Type II censored sample which contain the left Type II censored sample, right Type II censored sample and complete sample as special cases. Various statistical distributions in the literature possess the general exponential and the general inverse exponential forms. So, the results obtained can be applied to all these distribution. As illustration of the results obtained. Weibull and generalized inverted exponential are applied as example of general exponential form. While Burr III and generalized exponential are applied as example of general inverse exponential form. Simulation studies are also carried out for comparison of the different point estimators obtained. The comparison is based on mean squared error and the bias of the different estimators. A real life data set is also presented to demonstrate the applicability of the forms studied and the results obtain.

Keywords: Farlie- Gumbel- Morgenstern copula, general exponential form, general inverse exponential form, stress-strength reliability model, Metropolis-Hastings algorithm, Type II censored data, maximum likelihood estimator, Bayesian estimator, MCMC methods.

List of Abbreviations

AIC Akaike information criterion

BGE-FGM Bivariate General Exponential FGM

Model

BGE-I-FGM Bivariate General Exponential-General

Inverse Exponential FGM Model

BGI-E-FGM Bivariate General Inverse Exponential-

General Exponential FGM Model

BGI-FGM Bivariate General Inverse Exponential

FGM

BIC Bayesian information criterion

cdf Cumulative distribution function

FGM Farlie-Gumbel-Morgenstern

 $GEF(\alpha, \beta)$ General Exponential Form

 $\mathsf{IEF}(\lambda,\omega)$ General Inverse Exponential Form

IFM Inference functions for margins

K–S Test Kolmogorov–Smirnov Goodness–of–Fit

Test

MCMC Markov Chain Monte Carlo Methods

MH Metropolis-Hastings Technique

MLE Maximum likelihood estimator

MSE Mean-squared error

pdf Probability density function

List of Tables

3.1	Reliability of the bivariate Weibull FGM distribution, case ${\it A}_{1}$	78
3.2	Reliability of 10% double Type II censored data from generalized	80
in	verted exponential FGM distribution.	
3.3	Reliability of 10% double Type II censored data from Weibull-	81
В	urr XII FGM distribution.	
4.1	Reliability of the bivariate Burr III FGM distribution, B_1 .	108
4.2	Reliability of generalized exponential FGM distribution, \boldsymbol{B}_2 , for	110
10	0% double Type II censored data.	
4.3	Reliability of Burr-generalized exponential FGM distribution, B_3 ,	112
10	0% double Type II censored data.	
4.4	Recurrence times of infection for kidney patients	114
4.5	Maximum likelihood estimates of $\alpha's$, $\lambda's$ and ω and D_{X_1} , D_{X_2} .	115
4.6	The values of AIC and BIC for the suggested distributions.	115
4.7	The real data set.	116
4.8	Maximum likelihood estimates of α_1 , α_2 , β_1 and β_2 and	117
$D_{\underline{c}}$	$_{X_1}$, D_{X_2} for X_1 and X_2	
5.1	Estimation of Burr XII-inverse Weibull FGM distribution, C1,	131
ba	ased on 10% double Type II censored data.	
5.2	Estimation of R for bivariate Burr III-Weibull FGM distribution	132
ba	ased on 10% double Type II censored data.	
5.3	1-hr average concentrations of SO2 (in pphm), Long Beach	134
st	ation, California 1956–1974.	
5.4	The K-S distances between the suggested distributions and the	134
er	mpirical distribution functions of X_1 and X_2	
5.5	AIC and BIC of some suggested bivariate distributions	135