

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effectiveness of Muscle Stretching Exercise on Quality of Life of Hemodialysis Patients

Thesis

Submitted For Partial Fulfillment of Master Degree in Internal Medicine

By

Azza Mohamed Salah

M.B., *B.CH*

Under supervision of

Prof. Dr. Iman Ibrahim Sarhan

Professor of Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Sahar Mahmoud Shawky

Professor of Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Manal Mohamed Fl-deeb

Professor of Nephrology
Faculty of Medicine – Misr University for Science and
Technology

Dr. Nahla Mohamed Teama

Assistant Professor of Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Iman Ibrahim Sarhan**, Professor of Nephrology, Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Sahar Mahmoud Shawky**, Professor of Nephrology, Faculty of Medicine – Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Manal Mohamed El-deeb**, Professor of Nephrology, Faculty of Medicine – Misr
University for Science and Technology, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Dr.**Mahla Mohamed Teama, Assistant Professor of Nephrology, Faculty of Medicine – Ain Shams University, for her kindness, supervision and cooperation in this work.

Azza Mohamed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Hemodialysis (HD)	6
Exercise in Haemodialysis Patients	30
Quality of Life in Hemodialysis Patients	42
Patients and Methods	58
Results	68
Discussion	89
Limitations	97
Conclusion	98
Recommendations	99
Summary	100
References	102
Arabic Summary	_

List of Abbreviations

Abb.	Full term
AVF	. Arteriovenous fistula
AVG	. Arteriovenous graft
	. Beta 2 microglobulin
	. Beck Depression Inventory
	. Burden of kidney disease
	. Blood urea nitrogen
Ca	_
CDI	. Cognitive Depression Index
	. Chinese Dialysis Quality of Life Scale
•	. Chronic kidney disease
	Central nervous system
CVD	. Cardiovascular disease
EKD	. Stage kidney disease
EQ -5D	. EuroQOL -5 Dimensions
ESRD	. End stage renal disease
FLZ	Life satisfaction score
GFR	. Glomerular filtration rate
HD	. Hemodialysis
HRQoL	. Health-related quality of life
IEQ	. Illness Effects Questionnaire
KDOQI	. Kidney Disease Outcomes Quality Initiative
MCS	. Mental component symptoms
MUST	. Misr University for Science and Technology
NHP	. Nottingham Health Profile
NKF-KDOQI	. National Kidney Foundation- Kidney Disease Outcome Quality Initiative

List of Abbreviations Cont...

Abb.	Full term
PAN	Poly acryl nitril
	Physical component symptoms
	Peritoneal dialysis
	Profile for chronic diseases
PMMA	Poly methyl meth acrylate
PO4	Phosphorus level
PROs	Patient-reported outcomes
QALI	Quality of American Life
QoL	Quality of life
RRT	Renal replacement therapy
SF-36	Short Form-36
SIP	Sickness Impact Profile
SPKD	Symptoms and problems of kidney disease
URR	Urea reduction ratio

List of Tables

Table No.	Title	Page No.
Table (1):	Showing the sociodemogra characteristics of the studied population	_
Table (2):	Showing the difference between groups concerning sociodemogra characteristics	aphic
Table (3):	Showing the difference between groups concerning baseline labora data	atory
Table (4):	Showing the difference between cases controls concerning laboratory data a end of the study	t the
Table (5):	Showing the difference between groups concerning the domains KDQOL	of
Table (6):	Showing the difference between pre post exercise time concerning laboratory data	the
Table (7):	Showing the difference between pre post exercise concerning KDQOL for Case group	r the
Table (8):	Showing the difference between prepost exercise concerning KDQOL for control group	and r the
Table (9):	Showing the difference between cases controls concerning KDQOL scores a end of the study	s and t the

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Hemodialysis apparatus Showing the correlation between dia	
	dose and patient survival	23
Figure (3):	Health-related quality of life	43
Figure (4):	Head turn.	63
Figure (5):	Neck stretch.	64
Figure (6):	Single knee pull	65
Figure (7):	Showing the difference between groups concerning residency	
Figure (8):	Showing the difference between groups concerning BMI	
Figure (9):	Showing the difference between groups concerning PCS score	
Figure (10):	Showing the difference between groups concerning MCS score	
Figure (11):	Showing the difference between groups concerning BKD score	
Figure (12):	Showing the difference between groups concerning SPKD score	
Figure (13):	Showing the difference between groups concerning EKD score	
Figure (14):	Showing the difference between propost exercise Hgb levels among group	Case
Figure (15):	Showing the difference between propost exercise WBCs levels among group	e and Case

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Showing the difference between propost exercise PCS scores among group	Case
Figure (17):	Showing the difference between propost exercise MCS scores among group	e and Case
Figure (18):	Showing the difference between propost exercise SPKD scores among group	Case
Figure (19):	Showing the difference between propost exercise EKD scores among group	Case
Figure (20):	Showing the difference between propost exercise KDQOL total scores a Case group	mong

Introduction

Chronic kidney disease (CKD) is a disease affecting both kidneys in which progressive irreversible destruction of the renal tissues occurs. This leads to alteration of the metabolic function of the kidneys due to destruction of the nephrons (*Thomas et al.*, 2008). Kidney dysfunction is considered to occur when the glomerular filtration rate (GFR) falls below 60 ml/min/1.73 m2, for longer than three months (*Stevens et al.*, 2016).

There are five stages of chronic renal failure based on the GFR, stage 5 (GFR < 15 ml/min/1.73m²); this stage is also called end stage renal disease (ESRD) (*Vadakedath and Kandi*, 2017). Worldwide, patients with CRF are estimated to be 3,730,000 patients of them, 2.5 million patients undergo renal replacement therapy (RRT). And this percentage is expected to increase to reach 4.5 million patients by the end of 2030 (*Bikbov et al. 2020*).

Hemodialysis is a time consuming procedure that takes at least 3 to 5 hours a day, twice or three times a week (*Jung and Park*, *2011*). Dialysis induces notable metabolic changes involving hypovolemia due to ultrafiltration, and rapid changes in electrolyte concentrations and systemic inflammation, which can all adversely affect physical function (*Magnard et al.*, *2013*).

It is proved that exercise ;not only physical activity; could improve the quality of life of patients; physical activity is different from exercise in that Physical activity includes any movements involving contraction of muscles while exercise means physical activity that is organized and planned (Katzmarzyk et al., 2017); Clarke et al., found that exercise not only useful in reduction of hemodialysis complications but also in reduction of mortality rate in those patients (Clarke et al., 2019).

Stretching exercises have been traditionally used in treating increased resistance to passive movement, based on the biological principle that connective tissue will remodel over time in response to physical stress. At the cellular level, motion restrictions include the formation of cross bonds of the periarticular connective tissue that forms between the collagen bundles. Effective stretching exercises denature these cross bonds, allowing the collagen fibers to be reoriented parallel to the line of stress over time, thus creating the opportunity for plastic deformation of the collagen tissue (Jacobs and Sciascia, *2011*).

Within the past 40 years, many clinical trial were conducted to assess the role of physical training among hemodialysis patients. Physical activity among hemodialysis could be divided into intradialytic training and interdialytic training according to the time of physical exercises. Another classification was held whether it is a group or individualized sessions. Other experts adopted a different classification for

physical activity by dividing it into many groups with each having different outcome

The benefits of exercise are approved worldwide, in Australia, Jayaseelan et al studied HD patients' perception concerning role of exercise in their life and they found that more than 50% of patients were totally aware that exercise prevents the weakness of muscles and improves their appetite (Zeng et al. 2020). Chu and McAdams-DeMarco (Chu and McAdams-DeMarco, 2019) hypothesized that exercises help to relieve the uremic toxins which alters the degree of awareness of those patients which in turn improves their cognition and decreases their morbidity and mortality.

Despite that, patients do not regularly engage in active exercise programs. Worldwide, it was estimated that only 6% of HD patients undergo 4 to 5 days regular exercises (Clarke et al. 2019). Segura-Ortí et al et al., compared between patients with stage 3 or 4 CKD, patients undergoing hemodialysis and other healthy controls concerning their physical activity and regular engagement in exercises and found that healthy participants are significantly more likely to be active while stage 3 or 4 CKD patients physical activity status did not significantly differ from those undergoing hemodialysis (E et al. 2018).

Establishing a physical activity routine for patients on dialysis more than 6 months has advantages such as greater willingness to engage in training, convenient scheduling,