

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Impact of Cenozoic Structural Deformation on Hydrocarbon Preservation in South Alamein Block (northern Western Desert, Egypt)

A Dissertation Submitted for

the Degree of Doctor of Philosophy in Science (Geology)

By


Mohamed AbdElhady Farag Hassan

(M.Sc. in Geology)

To

Geology Department Faculty of Science Ain Shams University

Impact of Cenozoic Structural Deformation on Hydrocarbon Preservation in South Alamein Block (northern Western Desert, Egypt)

By

Mohamed AbdElhady Farag Hassan

(M. Sc. in Geology)

A Thesis submitted for the degree of Doctor of Philosophy in Science (Geology)

> To Department of Geology, Faculty of Science, Ain Shams University

> > **Supervisors**

Proi. Adel Kamadan Moustafa

Professor of Geology, Geology Department, Faculty of Science, Ain Shams University Prof. Mahmoud Samy Yousii

Professor of Geology, Geology Department, Faculty of Science, Ain Shams University

Mr. Antonio Gallego Exploration Manager CEPSA Egypt

2021

Validity of Ph.D. of Science Thesis in Geology

Name :	Mohamed AbdElhady Farag Hassan
	Impact of Cenozoic Structural Deformation on Hydrocarbon vation in South Alamein Block (northern Western Desert, Egypt)
Degree :	Doctor of Philosophy in Science (Geology)
	Supervisory Authority
	camadan Moustafa ogy, Geology Department, Faculty of Science, Ain Shams University)
•	oud Samy Yousif ogy, Geology Department, Faculty of Science, Ain Shams University)
3) Mr. Antonio (Exploration Mana	Gallego ager, CEPSA Egypt)
	Members of the Judging Committee
	camadan Moustafa ogy, Geology Department, Faculty of Science, Ain Shams University)
	oud Samy Yousif ogy, Geology Department, Faculty of Science, Ain Shams University)
	k I. A. Metwally oleum Geophysics, Geology Department, Faculty of Science, Helwan University)
	ouh M. E. Abdeen ctural Geology and Remote Sensing, the Egyptian National Authority for Remote Sensing s)
	Data for the administration of postgraduate studies
Discussion of the	Thesis date: / / Department Council approval date: / /
Approval of the I Employee Signature	Faculty Board: / / Approval of the University Council: / / Director of Studies Department Signature Faculty Secretary

ACKNOWLEDGEMENT

Gratitude is due to ALLAH almighty for all his great gifts and for getting this work done. I owe a great appreciation to my supervisor Professor Adel Ramadan Moustafa, the former dean of Faculty of Science, Ain Shams University, for his great efforts and guidance during the supervision and the revision of this thesis. I would like to sincerely thank him for his understanding and patience, and for improving my research, and field skills. Without his consistent and helpful instruction, my thesis would not have reached its final form. Also, my thanks are due to my supervisor Prof. Mohamoud Samy Yousif for his supervision. I would also like to thank my committee member Mr. Antonio Gallego, Exploration Manager, CEPSA Egypt, who helped me with great efficiency for working and using all available well data, 3D seismic, software and workstation to finish this study.

I am very grateful to the management of CEPSA Company for their help and permission to use all available data and for supporting my field trips. Also, thanks are due to the Egyptian General Petroleum Corporation.

Too many thanks to all members of the Department of Geology, Faculty of Science, Ain Shams University who provided me with help and encouragement to accomplish this work, especially Associate Prof. Hassan Garamoon who has been helpful in providing advice many times during my career. Prof. Mona Hagag was and remains my best role model for a scientist, mentor, and teacher. Great thanks to Prof. Ali Mohamed and Prof. Amin Strougo for their helpful advice on my research related issues.

I am very glad to who read the original manuscript and proposed suggestions that improved the final text, in particular Professor Dr. Adel

Chapter I

Ramadan Moustafa. I am very grateful to the authors of the various textbooks, papers, and other references that I used and benefited from throughout my educational and professional life.

I will forever be thankful to my former college researchers, Dr. Anhar, Dr. W. Ogila, W. Lotfy, S. Moawad, M. Farouk, I. Attiyah, B. Khalaf, A. Saied and others, for their assistance and support as well.

Finally, I would like to express my deepest thanks to my dearest dad, my kids, my brothers, and my sisters for their support. My thankfulness is due to my wonderful mom for her worry, motivation, and encouragement.

MOHAMED ABDELHADY

To my father

- to whom I promised
to contribute
this dissertation
before he passed this
world, always in my
heart.

Your Son

ABSTRACT

Oil and gas reservoirs in the northern Western Desert have Mesozoic age and later phases of deformation during the Cenozoic affected some areas of the northern Western Desert and may have positive or negative impact on hydrocarbon preservation in these fields. This thesis deals with this issue in one of the hydrocarbon exploration areas in the northern Western Desert (South Alamein area) with detailed surface study of Cenozoic deformation at Gebel Qattamia area (northern Eastern Desert). 3D seismic and borehole data were used for subsurface study of the South Alamein area whereas the surface study of Gebel Qattamia area is based on detailed surface geological mapping of the exposed structures and study of the faults and the nature of their fault rock material.

The deep stratigraphic levels in the South Alamein area (Masajid to Abu Roash Formation) are dissected mainly by ENE-WSW and NW-SE oriented faults. These faults become discontinuous and less dominant at the top Khoman Formation. At the top Apollonia and top Dabaa Formations, NNW-SSE oriented normal faults are well developed and an E-W belt of left-stepped en echelon faults is obvious at the northernmost part of the area.

The main ENE-WSW oriented faults had normal slip during the early and late Cretaceous (till end of Coniacian) and were inverted in the Santonian and during the Paleocene, Eocene, and Oligocene times. The WNW-ESE oriented faults had continued normal slip from Jurassic to post-Oligocene times with largest slip during the Campanian-Maastrichtian.

Detailed surface geological mapping of Gebel Qattamia area indicates three main fault sets oriented NNW-SSE, WNW-ESE, and E-W. The E-W and WNW-ESE oriented faults form one en echelon fault belt in the northern part of Gebel Qattamia area whereas the NNW-SSE oriented faults are the most dominant and form narrow linear grabens. Field measurements of fault damage zones indicate that they are dominated by fractures parallel to the faults in two conjugate sets. The width of the fault damage zones ranges from 15–20 meters (on each side of the fault) and the fault core material is mostly made up of breccia and/or gouge indicating deformation at shallow depth.

Comparison of the subsurface structures of the South Alamein area with those mapped at the surface at Gebel Qattamia area shows an identical structural pattern at the top Oligocene represented by NNW-SSE oriented narrow linear grabens abutted at the north by an E-W elongated belt of left-stepped en echelon normal faults. One of the narrow linear grabens in the South Alamein area is underlain by a 23 Ma basalt dike where the volcanic activity triggered the normal faulting. Rapid withdrawal of magma led to the formation of circular axial depressions at the top Apollonia Formation. The same subsurface structural features have also been identified at the surface in Gebel Qattamia.

The identical structural patterns in the South Alamein and Gebel Qattamia area indicates that the Cenozoic structures were formed at shallow structural levels and they do not reach the deep (Jurassic and Cretaceous) stratigraphic levels. For this reason, the Cenozoic deformation of the northern Western Desert does not have a negative effect on trap integrity at the deeper structural levels.

Chapter I

LIST OF CONTENTS

ACKNOV	VLEDGIVIEN IS	1
DEDICATION		
ABSTRACT		iv
LIST OF CONTENTE		vi
LIST OF FIGURES		xii
LIST OF TABLES		xxi
LIST OF I	ENCLOSURES	xxi
	Chapter I	page
I	INTRODUCTION	1
1.1	Location of the Study Areas	3
1.2	Objectives of the Study	4
1.3	Used Data and Work Methodology	5
1.4	Hydrocarbon Exploration History of the Northern Western Desert	6
1.5	Exploration History of the South Alamein Concession Area	12
1.6	Previous Studies on the Northern Western Desert	14
1.7	Previous Studies on the Northern Eastern Desert	22
	Chapter II	
II	STRATIGRAPHY	26
2.1	Stratigraphy of the study area of the northern Western Desert	26
2.1.1	PALEOZOIC	28
2.1.2	BAHREIN FORMATION	28
2.1.3	WADI NATRUN FORMATION	29
2.1.4	KHATATBA FORMATION	30
2.1.5	MASAJID FORMATION	31
2.1.6	ALAM EL BUEIB FORMATION	32
2.1.7	ALAMEIN DOLOMITE	33
2.1.8	KHARITA FORMATION	34
2.1.9	BAHARIYA FORMATION	35
2.1.10	ABU ROASH FORMATION	37
I.	ABU ROASH 'G' MEMBER	39
II.	ABU ROASH 'F' MEMBER	40
Ш	ABU ROASH ' E' MEMBER	41

IV.	ABU ROASH 'D' MEMBER	42
V.	ABU ROASH 'C' MEMBER	43
VI.	ABU ROASH 'B' MEMBER	44
VII.	ABU ROASH 'A' MEMBER	45
2.1.11	KHOMAN FORMATION	46
2.1.12	APOLLONIA FORMATION	48
2.1.13	DABAA FORMATION	49
2.1.14	MOGHRA FORMATION	50
2.1.15	RECENT TO POST-MIOCENE DEPOSITS	51
2.2	Stratigraphy of the study area of the Cairo-Suez District	52
2.2.1	Middle Eocene Rocks	52
i.	Unit E1	52
ii.	Unit E2	54
2.2.2	Upper Eocene Rocks (Unit U)	54
2.2.3	Oligocene Rocks	55
	Chapter III	
III	STRUCTURAL SETTING OF THE SOUTH ALAMEIN	57
	AREA	
3.1	Structure of the Mapped Horizons	58
3.1.1	Top Jurassic Structures	60
3.1.2	Top Alamein Dolomite Structures	62
3.1.3	Top Bahariya Structures	62
3.1.4	Top Abu Roash Structures	65
3.1.5	Top Khoman Structures	65
3.1.6	Top Apollonia Structures	68
3.1.7	Top Dabaa Structures	68
3.2	Nature of Slip on the Main Faults of the South Alamein Area	71
3.2.1	Slip on the ENE-WSW oriented Faults	71
3.2.2	Slip on the WNW-ESE oriented Faults	78
	Summary of the expansion ratio of the different mapped	82
Table 3.1	rock units due to normal displacement on the WNW-ESE	
	oriented F2 Fault in the South Alamein area	
3.3	Deformation History of the ENE-WSW and NE-SW	86
	Oriented Faults in Northern Egypt	00
2 4		
3.4	Deformation History of the WNW-ESE Oriented Faults in other Areas of Egypt	90

Chapter I

	Chapter IV	
IV	STRUCTURAL SETTING OF THE GEBEL	93
1 V	QATTAMIA AREA	
4.1	NNW-SSE Oriented Faults	98
Table 4.1	Data of the mapped faults of Gebel Qattamia area	98
4.1.1	F4 and F5 Faults	103
4.1.2	F6 Fault	111
4.1.3	F9 Fault	111
4.1.4	F15 Fault	117
4.1.5	F34, F40 and F42 Faults	125
4.1.6	F47 Fault	132
4.2	WNW-ESE Oriented Faults	132
4.2.1	F22, F38, F37, and F36 Faults	137
4.2.2	F100 Fault	145
4.3	Gebel Qattamia En Echelon Fault Belt	145
4.3.1	F44 Fault	144
4.3.2	F53 Fault	151
4.3.3	F63 Fault	151
4.3.4	F33 Fault	157
4.4	Other E-W to ENE-WSW oriented Faults	157
4.5	Reverse Faults	157
4.5.1	F68 Fault	163
4.5.2	F107 Fault	163
4.6	N-S Faults	163
4.6.1	F31 Fault	163
4.6.2	F76 and F79 Faults	168
4.6.3	F101 and F106 Faults	168
	Chapter V	
V	FAULT DAMAGE ZONES	170
5.1	Introduction	170
5.2	Field measurements of Fault Damage	172
5.3	Fault Damage Zones of the Gebel El Qattamia Area	173
5.3.1	NNW-SSE Oriented Faults	174
5.3.2	WNW-ESE Oriented Faults	190