

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The potential protective effect of niclosamide in a model of experimentally-induced liver fibrosis in rats

A thesis submitted for partial fulfillment of Master Degree in

Pharmaceutical Sciences

(Pharmacology and Toxicology)

<u>By</u>

Manar Mohamed Esmail

B.Pharm. Sc., Ain Shams University (2016)

Demonstrator of Pharmacology and Toxicology
Faculty of Pharmacy, Egyptian Russian University

<u>Under the Supervision of:</u> Associate Professor Reem Nabil Abou EL-Naga

Associate Professor in Pharmacology and Toxicology Department,
Faculty of Pharmacy,
Ain Shams University

Dr. Noha Mohamed Saeed

Lecturer in Pharmacology and Toxicology Department,
Faculty of Pharmacy,
Egyptian Russian University

Dr. Haidy Effat Michel

Lecturer in Pharmacology and Toxicology Department,
Faculty of Pharmacy,
Ain Shams University

(2021)

بسم الله الرحمن الرحيم

وو وَقُلْ رَبِّ زِدْنِي عِلْمًا وو

صدق الله العظيم

سورة طه (الأية ١١٤)

Acknowledgment

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research supervisor, Associate Professor Reem Nabil Abou EL-Naga, Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for giving me the opportunity to do research and providing invaluable guidance throughout this research. Her mentorship was paramount in providing the experience needed for completing this study.

I owe a special word of thanks to my supervisor, **Dr. Noha Mohammed Saeed**, Lecturer of Pharmacology and Toxicology,
Faculty of Pharmacy, Egyptian Russian University, for her advice,
motivation, supervision, efforts, valuable suggestions during the
practical part and crucial contribution during the whole research
process. It would not have been possible to write this thesis without
her help.

I would like to explicit my sincere thanks to my supervisor, **Dr. Haidy Effat Michel** Lecturer of Pharmacology and Toxicology,

Faculty of Pharmacy, Ain Shams University, for her guidance,

continuous support, valuable advices, motivation, immense

knowledge and patience during the whole process. Her guidance helped me in all the time of research and writing up this thesis.

I owe a lot to my parents for their continuous support, spiritual guidance and unconditional love throughout my personal and academic life. They provided me with the best of everything and gave me the strength to chase my dreams. My brothers deserve my wholehearted thanks as they always stood by my side, guiding me, helping me and supporting me.

I am thankful to **Prof. Dr. Adel Bakeer Kholoussy**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, and his highly respected laboratory team for their invaluable contribution in histopathological examination part of this work.

I would like to give everlasting thanks to my colleagues at the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, especially **Prof. Dr. Laila Ahmed Abdel-Aziz**, Head of the Department, for sharing their potentialities, truthful and illuminating views on a number of issues related to the study. It is difficult to overstate my deepest appreciation to **Prof. Dr. Ihab Mohamed Fetouh**, Dean of Faculty of Pharmacy, Egyptian Russian University.

Manar Mohamed Esmail

Content page
List of abbreviationsVII
List of tablesXII
List of figuresXIII
Abstract1
Introduction 3
1. Cholestatic liver diseases and liver fibrosis
1.1. Background
1.2. Cholestatic liver diseases etiology and prevalence 4
1.3. Cholestatic liver diseases diagnosis 6
1.4. Cholestatic liver fibrosis pathogenesis 8
1.4.1. Bile acid accumulation
1.4.1.1. Direct 8
1.4.1.2. Indirect
1.4.2. Oxidative stress
1.4.3. Inflammation
1.4.4. Bile duct proliferation

1.4.5. NOTCH pathway 1
1.4.6. Wnt pathway22
1.4.7. Cholestatic liver fibrosis23
1.5. Experimental models for cholestatic liver fibrosis 25
1.5.1. Obstructive model (Bile duct ligation)
1.5.2. Autoimmune models29
1.5.3. Xenobiotic models
1.6. Therapeutic approaches for cholestatic liver fibrosis 30
1.6.1. Ursodeoxycholic acid
1.6.2. Obetocholic acid
1.6.3. Fibroblast growth factor-19 mimetics 3
1.6.4. Transmembrane G-coupled receptor 5 3
2. Niclosamide
2.1. Background
2.2. Chemistry
2.3. Pharmacokinetics
2.4 Pharmacodynamics 3

2.5. Toxicity
2.6. Safety
Aim of the work42
Materials and methods45
1. Design of the work45
2. Materials 50
2.1. Animals
2.2. Drugs51
2.3. Chemicals51
2.4. Buffers 57
2.5. Readymade Kits 59
2.6. Antibodies
3. Methods
3.1. Biomarkers for hepatotoxicity74
3.1.1. Assessment of serum aspartate transaminase
(Doumas and Briggs)74
3.1.2. Assessment of serum alanine transaminase (Reitman
and Frankel. 1957):

3.2. Biomarkers for cholestasis
3.2.1. Assessment of serum gamma-glutamyl transferase79
3.2.2. Assessment of Alkaline phosphatase QuantiChrom™
Alkaline Phosphatase Assay Kit (DALP-250) 81
3.3. Assessment of Oxidative stress markers 83
3.3.1 Determination of serum levels of thiobarbituric acid
reactive substances indicative to malondialdehyde content
83
3.3.2. Assessment of serum levels of Superoxide dismutase
3.3.3. Assessment of liver content of reduced glutathione 92
3.3. Assessment of inflammatory markers using enzyme linked
immunosorbent assay96
3.3.1. Assessment of Interleukin-6 96
3.3.2. Assessment of Tumor Necrosis Factor-alpha100
3.3.3. Assessment of liver nuclear factor- kappa B content
105

3.4. Assessment of proto	ein in tissue homogenate (Kruger,
2002):	109
3.5. Assessment of NOT	ΓCH and Wnt signaling pathways by
Western blot technique.	11
3.6. Assessment of SOX	(9110
3.7. Detection of alpha-s	smooth muscle actin (α-SMA) and
transforming growth fact	tor-beta (TGF-β1) by
Immunohistochemistry to	echnique:119
3.8. Assessment of hydr	oxyproline12
3.9. Histopathological ex	xamination124
3.10. Statistical analysis	5129
Results	120
1. Hepatotoxicity and chole	estasis biomarkers120
2. Oxidative stress marker	rs and antioxidant enzymes132
3. Inflammatory markers	138
4. NOTCH signaling pathw	vay143
4. Wnt signaling pathway.	152
5. Fibrotic markers	15

7. Liver histopathological assessment	167
Discussion	170
Summary and conclusion	179
References	186
Arabic summery	١

List of abbreviations

ADAM	A disintegrin and metalloproteinase
ALP	Alkaline phosphatase
ALT	Alanine transaminase
AMAs	Antimitochondrial antibodies
ANIT	α-naphthyl isothiocyanate
ANOVA	analysis of variance
AR-V7	Androgen receptor- splice variant 7
AST	Aspartate transaminase
ATP	Adenosine triphosphate
Bcl2	B-cell lymphoma 2
BDL	Bile duct ligation
BECs	Biliary epithelial cells
BHT	Butylated hydroxytoluene
BSA	Bovine serum albumin
CAT	Catalase
CBF1	C promoter-binding factor-1
CLF	Cholestatic liver fibrosis

CSL	CBF1, Suppressor of Hairless, Lag-1
CYPs	Cytochrome P450 enzymes
DDC	Diethoxycarbonyl-dihydrocollidine
DMSO	Dimethyl sulfoxide
DNPH	Dinitrophenyl-hydrazine
DRC	Ductal reactive cells
Dvl2	Dishevelled2
ECM	Extracellular matrix
Egr-1	Early growth response1
ELISA	Enzyme-linked immunosorbent assay
EMT	Epithelial–Mesenchymal transition
ERCP	Endoscopic radiologic cholangiopancreatography
ERK	Extracellular signal-regulated kinase
FGF-19	Fibroblast growth factor-19
FZD1	Frizzled1
GGT	Gamma-glutamyl transferase
GSH	Glutathione
GSH-Px	Glutathione peroxidase
HAT	Histone acetyltransferases