سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفي

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Tanta University Faculty of Engineering

Dept. of Electronics and Electrical Communications Eng.

Channel Assignment in Mobile Radio Networks

A thesis Submitted in Partial Fulfillment for the Degree of

Master of Science

By

Heba A. El-khobby (B. Sc)

Supervised by

Prof. Mostafa M. Abdel-Nabi

Dept. of Electronics and Electrical Communication Eng. Faculty of Eng., Tanta University Prof. Mostafa A. Nofal

Dept. of Electronics and Comm. Engineering Faculty of Electronic Eng.

Menoufia University

Dr. Salah A. Khamis

Dept. of Electronics and Electrical Communication Eng. Faculty of Eng., Tanta University

B

Tanta University Faculty of Engineering

Dept. of Electronics and Electrical Communications Eng.

Thesis: Channel Assignment in Mobile Radio Networks

Student: Eng. Heba Ali El-Khobby

Degree: Master of Electric Engineering (Electronics and

Electrical Communication Eng.)

APPROVED BY:

Prof. Ibrahim M. El-Dokany

· El-Dorcay

Dept. of Electronics and Electrical Communication Eng. Faculty of Engineering Menoufia University

Dept. of Electronics and Electrical Communication Engineering Faculty of Engineering Alexandria University

Prof. Said M. Elnoubi

Dr. Mohammed E. Nasr

Dept. of Electronics and Electrical Communication Eng. Faculty of Eng., Tanta University

Tanta University Faculty of Engineering

Dept. of Electronics and Electrical Communications Eng.

Thesis : Channel Assignment in Mobile Radio Networks

Student: Eng. Heba Ali El-Khobby

Degree: Master of Electric Engineering (Electronics and

Electrical Communication Eng.)

Supervisors

Prof. Mostafa Abdel-Nabi

Mousty Mahand

Dept. of Electronics and Electrical
Communication Eng.
Faculty of Engineering
Tanta University

Prof. Mostafa Nofal

M. Nopol

Dept. of Electronics and Communication Engineering Faculty of Electronic Eng. Menoufia University

Dr. Salah Khamis

Dept. of Electronics and Electrical Communication Engineering Faculty of Engineering Tanta University

Salah

To

My parents, my brothers, and my great pioneer Prof. Mostafa Nofal.

NOTE ON PUBLICATION

Paper title: "Teletraffic performance analysis of mobile radio networks with overlapping microocells"

Authors: Salah Khamis, and Heba El-Khobby

A paper is accepted for publication in the proceeding of Alexandria Engineering Journal.

A paper is accepted in the proceeding of the 10th International Conference on Aerospace Sciences & Aviation Technology, Military Technical College, Kobry El-Kobbah, Cairo, Egypt, May 13-15, 2003.

Acknowledgements

First of all, priase and thanks to God for every thing occured or to be occured in my life.

To all who helped me directly or indirectly in bringing this thesis to light, I send my great appreciation and gratitude to all of them, with special regards to:

Prof. Mostafa Abdel-Nabi, for his guidance, indispensable help and continuos encouragement.

Prof. Mostafa Nofal, who taught, helped and encouraged me a lot through out the days of work on the thesis, until I reached the desired standard. I can not fulfill him his true rewards. It has been a privilege to work close to them. He strongly supported me, spending very much time supervising me step by step, and overcoming any obstacles that faced me.

Dr. Salah Khamis, for his generous experience, helpful advises and guiding suggestions.

All thanks to their great support and careful valuable revision of the thesis.

Abstract

Overlapping coverage of nearby base stations is exploited in order to improve the performance of microcellular mobile radio networks. A teletraffic model is developed and the performance is analyzed for the network scenarios when overlapping coverage is and is not utilized. Furthermore, handover priority policies are considered in the analysis. The grade of service of the network is gauged in terms of the estimation of call blocking rate as well as handover failure probability. Numerical results are obtained through analytical as well as simulation modeling as possible and good agreement is achieved. The results dictate the exploitation of the overlapping coverage as alternative routes in order to improve the network performance and increase its capacity.

TABLE OF CONTENTS

Ackno	owledgen	ients	v	
Abstr	act		v	
Table	of Conte	nts	vi	
List o	f Figures		x	
List o	f Symbols	s	xi	
List of	f Abbrevi	iations	XV	
Chap	ter 1: " I	NTRODUCTION "	1	
1.1	Objecti	ve of the thesis	2	
1.2		zation of the thesis	3	
Chap	ter 2: " (OVERVIEW OF MOBILE RADIO NETWORKS "	5	
2.1	Introdu	ction	5	
2.2	Evaluat	valuation of Mobile Radio Communication		
2.3	The Ce	llular Concept		
2.4	Engine	ering of the Cellular System		
2.5	Basic e	lements of cellular mobile radio networks 1		
2.6	Mobile	Radio Channel Characteristics		
2.7	Channe	el Allocation Schemes	19	
	2.7.1	Fixed channel assignment (FCA)	20	
	2.7.2	Dynamic channel assignment (DCA)	20	
	2.7.3	Hybrid channel assignment (HCA)	23	
2.8	Radio A	Access Techniques	23	
	2.8.1	Frequency division multiple access (FDMA)	24	
	2.8.2	Time division multiple access (TDMA)	24	
	2.8.3	Code division multiple access (CDMA)	25	
2.9	Hand-o	ver Strategies	25	
2.10	Microcellular Scenarios		26	
	2.10.1	Highway microcellular layout	27	
	2.10.2	City street microcellular layout	28	
	2.10.3	Building microcellular layout	29	

Cha	pter 3: "	COMMUNICATION AND VEHICULAR TRAFFIC	30			
		FOR MOBILE RADIO NETWORKS "				
3.1		Introduction				
3.2		Communication Traffic Analysis of Fixed Network				
3.3		Technical Terms of the Teletraffic Theory				
3.4		General birth-death process.				
3.5		Blocked Calls Cleared System (Loss System)				
3.6		The Delay System				
3.7		ffic Theory for Cellular Radio Networks	43			
	3.7.1	Teletraffic demand	44			
3.8	Vehicular Traffic Flow Theory					
	3.8.1	Flow, speed, and density	46			
	3.8.2	Level of service	48			
	3.8.3	Headways distribution in highway traffic flow	50			
	3.8.4	Impact of vehicular traffic flow on the teletraffic demand	51			
Chap	ter 4: "	TELETRAFFIC MODELING OF MOBILE RADIO	54			
NET	WORKS	WITH OVERLAPPING MICROCELLS"				
4.1	Introdu	ction	54			
4.2		y Microcellular Structure	55			
4.3	Teletraffic Modeling of Non-Overlapping Scenario					
	4.3.1	Handover call rate	61			
	4.3.2	Average channel holding time	65			
	4.3.3	Handover requirements probabilities	66			
	4.3.4	Non priority scheme	67			
	4.3.5	Handover priority scheme	68			
	4.3.6	Sub-rating scheme	70			
4.4		fic Modeling of an Overlapping Scenario	71			
Chapt	Chapter 5: "TELETRAFFIC SIMULATION OF A HIGHWAY					
MICR	COCELL	ULAR MOBILE RADIO NETWORKS "				
5.1		tion	78			
5.2	Simulation Model					

	5.2.1	Advantages of simulation	79
	5.2.2	Disadvantages of simulation	79
5.3	Descrip	otion of the Teletraffic Simulation Model	79
	5.3.1	Initialization routine	80
	5.3.2	New call generation routine	80
	5.3.3	Handover and folding routine	81
	5.3.4	Termination and updating routine	82
	5.3.5	Statistics accumulation routine	82
5.4	Numeri	cal Results	82
5.5	Paramet	tric Effects	87
	5.5.1	Effects of reserved channel scheme and sub-rating scheme	87
Chapter 6: "CONCLUSION AND FUTURE WORK "			93
6.1	Conclus	ion	93
6.2		Work	94
Refere			96