

بسم الله الرحمن الرحيم

HOSSAM MAGHRABY

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HOSSAM MAGHRABY

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغيار

HOSSAM MAGHRABY

Improving Viability and Cryotolerance of *In Vitro* Produced Cattle Embryos

A thesis submitted by

Yasser Hussein Ali Saber

(BVSc, Benisuef University, 2011; MVSc, Cairo University, 2017)

For the degree of Ph.D (Theriogenology)

Under Supervision of

Dr. Adel A. M. Seida

Professor of Theriogenology Faculty of Veterinary Medicine Cairo University

Dr. Wahid M. M. Ahmed

Professor of Reproductive Hygiene Veterinary Research Institute National Research Centre

Dr. Refaat S. A. Ragab

Professor of Theriogenology Faculty of Veterinary Medicine Cairo University

Dr. Karima Gh. M. Mahmoud

Professor of Reproductive Genetics Veterinary Research Institute National Research Centre Cairo University
Faculty of Veterinary Medicine
Department of Theriogenology

Name : Yasser Hussein Ali Saber

Nationality : Egyptian

Date and place of birth : January 24th, 1989 **Scientific degree** : Doctor of philosophy

Specification : Theriogenology

Title of thesis : Improving Viability and Cryotolerance of *In Vitro*

Produced Cattle Embryos

Supervisors:

1- Dr. Adel Attia Mohamed Seida

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University

2- Dr. Refaat Sobhy Ahmed Ragaab

Professor of Theriogenology, Faculty of Veterinary Medicine, Cairo University

3- Dr. Wahid Mohamed Mohamed Ahmed

Professor of Reproductive Hygiene, Veterinary Research Institute, National Research Centre, Cairo

4- Dr. Karima Ghoneimy Mohamed Mahmoud

Professor of Reproductive Genetics, Veterinary Research Institute, National Research Centre, Cairo

Abstract

In vitro embryo production (IVEP) is considered as one of the most important technologies in cattle industry due to production of superior quality embryos with high developmental competence that use at low costs in embryo transfer programs. So, improvement of in vitro culture systems are the most critical and essential step to keep on this biotechnology. Hence, the current experiments were designed. Experiment 1, aimed to (I) study the effect of phenazine ethosulfate (PES) supplementation in culture media on the selected miRNAs (miR-205, miR-26a-5p, and let-7b) and their target genes (OCT4, DNMT, CASP3, ATF6, ATP5ME, and ELOVL5), during bovine embryo production. Therefore, a group of twoday bovine embryos was cultured in a medium with lipid-reducing agent, PES (0.3 mM). Another group of embryos without PES was left as a control. Embryos were vitrified and morphologically examined after warming and the viability was evaluated by culturing for 24 h. After evaluation, embryos were classified as good or poor. Afterwards, embryos (blastocyst and morula) were kept at -80°C for RNA extraction and qRT-PCR of miRNAs and their targets. Results revealed that the rate of morula was higher (P<0.01) in treated compared to control groups. After vitrifications, the percentage of good quality embryos increased in treated than control groups. Additionally, the rate of dead embryos was high in control groups. The Let-7b and miR-205 were significantly over-expressed in the treated good as well as poor embryos compared to control (untreated) good and poor embryos, respectively. However, miR-26 was suppressed in the treated good and poor embryos compared to control (untreated) embryos, respectively. Both of OCT4 and DNMT1 transcripts up-regulated in the treated (good& poor) embryos compared to control groups. The ELOVL5 gene decreased in the treated (good&poor) embryos, compared to control untreated groups. In conclusion, PES supplementation reduced lipid droplets, and improved cryotolerance of morula and/or blastocysts through regulation the pattern of lipid metabolism and embryo quality genes.

Experiment 2, aimed to (I) study the effect of resveratrol supplementation in culture media on the quality of in vitro produced bovine embryos (II) monitoring changes in the expression of genes associated with oxidative stress and quality of embryos. So, three groups of bovine embryos were cultured with resveratrol at different concentrations (0.01, 0.001 and 0.0001µM). Another group without resveratrol was left as a control. Embryos were morphologically examined after vitrification and the viability was evaluated by culturing for 24 h. After evaluation, embryos were classified as good or poor. Afterwards, embryos were kept at -80°C for RNA extraction and qRT-PCR of target genes. Results revealed that the low concentrations of 0.001 µM (P<0.05) and 0.0001 µM (P<0.01) significantly improved the blastocyst rate than the control group. After vitrifications and culture for 24 hr, the percentage of good quality embryos increased (P<0.05) in treated groups with 0.001 and 0.0001 µM resveratrol compared to the control group. The OCT4 and DNMT1 genes were significantly over-expressed in the treated good as well as poor embryos compared to untreated good and poor embryos, respectively. However, the CASP3 was suppressed in the treated good embryos compared to control (untreated) embryos. Both of ELOVL5 and ATF6 transcripts down-regulated in the treated good embryos compared to control groups. The genes related to oxidative stress response (GPX4, SOD and CPT2) increased in the treated (good& poor) embryos, compared to the control group. While NFE2L2 mRNA decreased in the treated good embryos compared to the control untreated group. In conclusion, resveratrol supplementation with low concentration reduced oxidative stress, and improved cryotolerance of the blastocysts through regulation of some genes that related to oxidative stress response and embryo quality.

Keywords: Bovine; Gene expression; Phenazine ethosulfate; Resveratrol; Embryo quality; Viability; Cryotolerance.

DEDICATION

I would like to dedicate this humble dissertation with lots of love and respect to

My parents,

My wife,

My daughters

My sister and

My brothers

Without their support, love and care, I would not have realized my dreams in life.

Acknowledgment

I offer my humble thanks to almighty **Allah**, the most merciful and most compassionate and the entire source of all knowledge and wisdom. I am indeed humbly greatfull the holy prophet Mohammad (peace be upon him), the final of messengers who is forever a torch of guidance and ideal for all mankind. Prayerful thanks to Allah who gave me the strength, power and endurance to finish this work and everything I have.

I feel much pleasure to express my sincere thanks to my supervisor **Dr. Adel**Attia Mohamed Seida, Professor of Theriogenology, Faculty of Veterinary Medicine,

Cairo University, for his valuable supervision, keen interest, continuous encouragement and inexhaustible inspiration throughout my research work. I am very honored and lucky to work under his supervision.

I must extend deep emotions of appreciation to my supervisor **Dr. Refaat**Sobhy Ahmed Ragab, Professor of Theriogenology, Faculty of Veterinary Medicine,
Cairo University, for his religious manner, expert guidance and indispensable advice.

I wish to express my thanks and the deepest gratitude to my supervisor Dr. Wahid Mohamed Ahmed, Professor of Reproductive Hygiene, Dept. of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, for his heartening, kind supervision, providing me enthusiastic guidance, constructive criticism and great advice.

I wish to express my deep appreciation to my supervisor Dr. Karima Ghonaimy Mohamed mahmoud, Professor of Reproductive Genetics, Dept. of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, for her scientific cooperation, valuable suggestions during entire period to enable me to prepare this work in the present form, continuous encouragement, guidance, constant supervision and great help throughout the whole work. Thanks for everything.

All grateful thanks and sincere gratitude for **Dr. Sally Rashad El-Said Ibrahim,** Researcher in Animal Reproduction and A.I., National Research Centre, for her indispensable support, constant friendship, cooperation in practical part, paper writing, thesis writing, enthusiasm in reading and criticizing the manuscript, valuable suggestions during entire period and financing support.

I wish to express my thanks to all the staff members, colleagues and workmen in Department of Animal Reproduction and AI, National Research Centre and Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, for their valuable help, support and encouragement.

At last, but not least, I would like to express my grateful thanks to my family for their love, support, cooperation and encouragement.

Contents

Abstract		•••••
Dedication		•••••
Acknowledgement		
Γable of Contents		•••••
List of Tables		I
List of Figures		II
List of Abbreviations		III
Chapter 1: Introducti	on	1
Chapter 2: Review of	Literature	5
2.1. In vitro embryo	production (IVEP)	5
2.1.1. Evaluation of	f embryo quality	6
2.1.2. General aspe	cts of bovine embryo metabolism	7
2.1.3. Lipid molecu	lles and embryonic development	9
2.1.4. Oxidative str	ess and embryonic development	10
2.2. Embryo cryopro	eservation	11
2.2.1. Phenazine etl	hosulfate (PES) and vitrification of bovine embryos	12
2.2.2. Resveratrol a	nd vitrification of bovine embryos	14
2.3. Gene expression	analysis in embryos	15
2.3.1. Effect of PES	S on embryonic gene expression analysis	15
2.3.2. Effect of resv	veratrol on embryonic gene expression analysis	16
2.4. Candidate gener	s related to pluripotency, cell programming and embryo qua	lity 16
2.4.1. Octamer-bind	ding transcription factor4 (OCT4) gene	16
2.4.2. DNA methyl	transferase (DNMT) gene	17
2.4.3. Cysteine-asp	artic acid protease (CASP3) gene	17
2.5. Candidate gene	s related to lipid metabolism, mitochondrial activity and	18
endoplasmic retic		
	y acid elongase 5 (ELOVL5) gene	
	se membrane subunit E (ATP5ME) gene	
2.5.3. Activating tr	ranscription factor 6 (ATF6) gene	20
2.6. Candidate gene	es related to oxidative stress	20
2.6.1. Glutathione	peroxidase 4 (GPX4) gene	20
-	e dismutase (SOD) gene	
2.6.3. Carnitine pa	lmitoyltransferase 2 (CPT2) gene	21
2.6.4. Nuclear fact	or, erythroid 2 like 2 (NFE2L2) gene	22
2.7. Micro RNA and	d post transcriptional factors	22

Chapter 3: Published paper (s)	24
3.1. Changes in the relative abundance of miR-205, miR-26a-5p, let-7b and their targ	et
genes in vitrified bovine embryos after phenazine ethosulfate supplementation	25
1. Abstract	26
2. Introduction	27
3. Materials and Methods	29
3.1. Cumulus-oocyte complexes (COCs) collection, selection and maturation in vitro	29
3.2. <i>In vitro</i> embryo production	30
3.3. Vitrification and warming of embryos.	30
3.4. Survival assay	31
3.5. In-silico analysis for the identified candidate miRNAs	31
3.6. RNA isolation, cDNA synthesis (for large and small RNA) and quantitative real-time PCR (qRT-PCR)	
3.7. Statistical analysis	33
4. Results	33
4.1. Expression profiling of pluripotency, cell-programming, embryo quality associated genes	34
4.2. Relative abundance of lipid metabolism, mitochondrial activity, and endoplasmic reticulum stress associated genes in bovine embryos	34
4.3. The expression pattern of miRNAs (let-7b, miR-26, and miR-205), which are targe	ting
CASP3, DNMT1, and ELOVL5 in bovine embryos	35
5. Discussion	35
6. Conclusion	39
7. References	40
8. Tables and figures	46
3.2. The expression levels of some genes involved in oxidative stress as a result of	50
resveratrol supplementation in vitrified cattle embryos	
1. Abstract.	
2. Introduction	
3. Materials and methods	
3.1. Collection, selection and in vitro maturation of cumulus-oocyte complexes (COC	
3.2. In vitro fertilization (IVF) and embryo culture	
3.3. Vitrification and warming of embryos	
3.4. Embryo evaluation	
3.5. RNA isolation and cDNA synthesis	
3.6. Quantitative real-time PCR analysis	
3.7. Statistical analysis	
4. Results	60
4.1. Effect of resveratrol supplementation at different concentrations on development	
bovine embryos and their cryotolerance	60
4.2. Expression profiling of pluripotency, cell-programming, embryo quality associate	
genes	60

4.3. Relative abundance of lipid metabolism, mitochondrial activity, and endoplasmic	
reticulum stress associated genes in bovine embryos	61
4.4. The expression pattern of oxidative stress response associated genes in bovine	
embryos	61
5. Discussion	62
6. Conclusion	67
7. References	68
8. Tables and figures	76
Chapter 4: Discussion.	79
Chapter 5: Conclusion and Recommendations	87
Chapter 6: Summary	89
Chapter 7: References	
Appendix	113
الملخص العربي المستخلص العربي	
المستخلص العربي	

List of Tables

No	Title	Page
Chapter 3.1.		
Table (1)	The primers used for qRT-PCR analysis	46
Table (2)	List of miRNAs names, miRbase accession numbers and	46
	their mature sequences	
Table (3)	Developmental competence of cattle oocytes after culture	47
	supplementation with phenazine ethosulfate	
Table (4)	Cryotolerance of cattle embryos after culture	47
	supplementation with phenazine ethosulfate	
Chapter 3.2.		
Table (1)	List of primers used for qRT-PCR analysis	76
Table (2)	Developmental competence of cattle oocytes after culture	77
	supplementation with resveratrol	
Table (3)	Cryotolerance of cattle embryos after culture	77
	supplementation with resveratrol	

List of Figures

No	Caption	Page
Chapter 3.1.		
Figure (1)	Expression profiling of pluripotency, cell-programming,	48
	embryo quality associated genes	
Figure (2)	Relative abundance of lipid metabolism, mitochondrial	48
	activity, and endoplasmic reticulum stress associated	
	genes in bovine embryos	
Figure (3)	The expression pattern of miRNAs (let-7b, miR-26, and	49
	miR-205), which are targeting CASP3, DNMT1, and	
	ELOVL5 in bovine embryos	
Chapter 3.2.		
Figure (1)	Expression profiling of pluripotency, cell-programming,	78
	embryo quality associated genes	
Figure (2)	Relative abundance of lipid metabolism, mitochondrial	78
	activity, and endoplasmic reticulum stress associated	
	genes in bovine embryos	
Figure (3)	The expression pattern of oxidative stress response	78
	associated genes in bovine embryos	

List of Abbreviations

μM Micro Mole

ACTB β-actin

ATF6 Activating transcription factor 6

ATP Adenosine triphosphate

ATP5ME ATP synthase membrane subunit E

BP Base pair

BSA Bovine serum albumin

CASP3 Cysteine aspartic acid protease

cDNA Complimentary DNA

COC Cumulus oocyte complexes

CPT2 Carnitine palmitoyltransferase 2

Ct Cycle threshold

DMSO Dimethyl sulfoxide

DNA Deoxy ribonucleic acidDNMT DNA methyltransferase

D-PBS Dulbecco's phosphate buffer saline

EGA Embryonic genome activation
ELOVL5 ELOVL fatty acid elongase 5

ER Endoplasmic reticulum

GAPDH Glyceraldehyde-3- phosphate dehydrogenase

GPX4 Glutathione peroxidase 4

GSH Glutathione

 H_2O_2 Hydrogen peroxide

ICM Inner cell mass

IETS International embryo technology society

IVC In vitro culture

IVEP In vitro embryo production

IVF In vitro fertilization
IVM In vitro maturation