

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Surface Enhanced Spectroscopy of Molecules on Plasmonic Nanostructures

A Thesis
Submitted to the Faculty of Science
Ain Shams University
For the Degree of Doctor of Philosophy in Physics

By Hend Awad Abdelhamid Youssef

M. Sc. Ain Shams University (2009)

Supervised by

Prof. Dr. Mohamed Hassan Talaat

Prof. of Experimental Physics Faculty of Science-Ain Shams University

Dr. Tamer Abdallah Fathy

Assoc. Prof. of Experimental Physics Faculty of Science-Ain Shams University

Dr. Khalid Hassan Easawi

Assoc. Prof. of Experimental Physics Department of Mathematical and Physical Engineering Faculty of Engineering Benha University

Approval Sheet

Student Name: Hend Awad Abdelhamid Youssef

Thesis Title: Surface Enhanced Spectroscopy of Molecules on Plasmonic

Nanostructures

Degree: Doctor of Philosophy in Science in Physics

Supervision committee

Prof. Dr. Mohamed Hassan Talaat - Faculty of Science-Ain Shams University

Dr. Tamer Abdallah Fathy - Faculty of Science-Ain Shams University

Dr. Khalid Hassan Easawi – Faculty of Engineering – Benha University

Examiners Committee

Prof. Dr. Tharwat Mahmoud Ahmed Elsherbini - Faculty of Science – Cairo University

Prof. Dr. Filbert Bartoli – Lehigh University – United States of America

Prof. Dr. Mohamed Hassan Talaat - Faculty of Science -Ain Shams University

Higher Students

Thesis Approval Date:

Faculty Council Approval:

University Council Approval:

Student Name: Hend Awad Abdelhamid Youssef

Degree: Doctor of Philosophy in Science in Physics

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Year: 2003

Master Approval Year: 2009

Ph D Approval Year: 2020

Acknowledgment

All the thanks are first and last to Allah

I would like to express my gratitude and admiration to my Professor Dr. Hassan Talaat for suggesting this point of research and kindly supplied me with all necessaries of this research. I would like also to thank him for the patient guidance, encouragement, and advice he has provided throughout all my time as his student. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly.

I would also like to thank Dr. **Tamer Abdallah** for his support and meticulous supervision of every item in this work and valuable discussions together with objective criticism are gratefully appreciated.

I would like to thank Professor Dr. **Tarek Ahmed** for his kindly help and discussion of everything I asked for.

I would like to thank also my colleagues in the laser technology unit for kind help, encouragement, and useful discussions.

I would like to express my deep thanks to Prof. Dr. **Sohair Negm** for her kindly help and for her continuous encouragement. I would also like to thank all her group, especially Dr. **Khalid Easawi**, in Faculty of Engineering-Banha University for their encouragement and support.

Many thanks to Dr. **Reham Hassan** –Zoology Department, for her generous help and useful discussions.

The help with sample preparation of biosensors and sensitivity measurement of biosensors of Dr. Haci, and Dr. Noha Waly at Prof. Dr. **R. Dahint** group at Heidelberg University, Germany, are appreciated.

Also, the help with Raman spectroscopy, of S. R. Panikkanvalappil, and TEM measurements of Moustafa Ali, useful discussions with Dr. Mahmoud Abdelwahed of Prof. Dr. **M. El-Sayed** group at Georgia Institute of Technology, USA, are greatly appreciated.

I greatly appreciate Prof. Dr. **Stanislav Emelianov**, Georgia Institute of Technology for hosting me at his laboratory. Also I would like to thank his group for their generous help.

Most importantly, I want to thank all my family, especially my parents, my brother, my sister, my husband, and my husband's family who offered willingly all the time and care and continuous support. Without their help this work wouldn't be finished.

To my lovely Kids, Ali, Nadia, and Mervat, your love and continuous support are what keeps me going.

Table of Contents

List of Figuresi
List of Tablesv
Abstractvi
Chapter 1:Introduction1
Chapter 2:Plasmonic Nanoparticles6
2.1 Introduction6
2.2 Bulk Plasmons6
2.3 Surface plasmons7
2.4 Localized Surface Plasmons9
2.4.1 Surface plasmon resonance (SPR)9
2.4.2 Normal modes of small metal nanoparticles11
2.4.2.1 Mie theory for nanospheres
2.4.2.2 Gans theory for Nanorods15
2.4.3 Polarizability for larger nanoparticles
2.4.4 Coupling between localized plasmons17
Chapter 3:Gold Nanoparticles as Contrast Agent for
Photoacoustic Imaging20
3.1 History and background of Photoacoustic Imaging20
3.2 Photoacoustic contrast agents24
3.3 Combined Ultrasound and Photoacoustic (US-PA) imaging
3.4 Size effect of Gold Nanospheres on PA signal28

	Synthesis and characterization of gold nanos rent sizes	-
3.4.1.1	UV-Vis Absorption Spectroscopy	29
3.4.1.2	Dynamic Light scattering	31
	Transmission electron microscope (TEM)	
3.4.2	Cell culture	35
3.4.3	Quantitative PA measurements	37
	ned US-PA imaging to compare between Bagold nanospheres	
3.5.1 A	AuNSs PEGylation process	42
3.5.2 U	JS-PA Measurements	47
	coustic imaging for Gold Nanorods with dif	
	Synthesis and characterization of AuNRs aspect ratios	
3.6.1.1	UV-Vis absorption spectra	54
3.6.1.2	TEM images	55
	JS-PA imaging for AuNRs with different gelatin.	_
	imaging for cells loaded with PEGylated AuNRs	
3.7.1 F	Sunctionalization Process	59
3.7.2 U	JV-Vis absorption	60
3.7.3 U	JS-PA imaging Experiment	63

	_	4:Surface Enhanced Raman Spectrosc ctured Label-free Biosensors	
		history and classical treatment of (Pre SERS)	
4.2	Surface	Enhanced Raman Spectroscopy (SERS)	74
	4.2.1.1	Electromagnetic mechanism of SERS	75
	4.2.1.2	Chemical mechanism of SERS	78
4.3	Label f	ree biosensors	79
4	.3.1 S	amples preparation	81
4	.3.2 S	amples characterization	82
	4.3.2.1	UV-Vis extinction spectra	82
	4.3.2.2	Scanning Electron Microscopy (SEM)	83
	4.3.2.3	Scanning Tunneling Microscopy (STM)	85
4	.3.3 S	ensitivity of the substrates	90
4	.3.4 S	ERS measurements	93
	4.3.4.1	The Raman spectrometer	93
	4.3.4.2	SERS of Cresyl Violet(CV)	95
	4.3.4.3	SERS for Fibrinogen	98
	_	:Surface Enhanced Raman Spectrosc DNA Cancer Mutations	
5.1	Introdu	ction	104
5.2	Cancer and how it starts105		
5.3	Kirsten	ras oncogene (KRAS) gene mutation	106
5.4		S	
5.5		lology	

Publications ArabicSum			
References.	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	131
Chapte	r 6:Con	clusions	127
5.5.3	3 Addi	ing aggregating ag	gent124
5.5.3	2 Limi	t of Detection	122
5.5.3	1 Ram	an mapping	116
5.5.3	SERS r	neasurements	113
5.5.2	DNA h	ybridization	111
5.5.1	DNA in	nmobilization	109

List of Figures

Figure 1 Surface plasmon wave along a metal-dielectric interface
8
Figure 2 Schematic for the dipolar mode of a spherical particle
driven by an external field
Figure 3 Schematic for the lowest-order longitudinal and
transverse modes of a nanorod
Figure 4 Homogeneous sphere under applied electrostatic field 12
Figure 5 Plasmon coupling in case of transverse polarization and
longitudinal polarization
Figure 6 Steps of the photoacoustic imaging process22
Figure 7 Experimental setup of UV-Vis spectrophotometer 30
Figure 8 UV-Vis Absorption spectra of Au Nanoparticles of three
different sizes
Figure 9 Schematic of the DLS setup for determination of the
hydrodynamic size
Figure 10 Hydrodynamic size distribution for AuNS of different
sizes34
Figure 11 TEM images for two gold nanoparticles with different
sizes
Figure 12 MDA-MB 231 cancer cells seeded in a 6-well tissue
culture plate and incubated with Gold nanoparticles36
Figure 13 Schematic of QPA setup
Figure 14 PA signal for cells loaded with gold nanoparticles with
different ODs for three different particle sizes as indicated39
Figure 15 Dark field microscope image for cells after incubation
with AuNPs with OD3 (a) and OD1 (b)41
Figure 16 UV-Vis Absorption spectra of the 12 nm Au
Nanoparticles before and after PEGylation43
Figure 17 Hydrodynamic size smallest particle size before and
after PEGylation
Figure 18 Schematic of the Zeta potential DLS setup45

Figure 19 Zeta potential of citrate stabilized AuNS(black), and
PEGylated AuNS(red)46
Figure 20 Combined ultrasound-photoacoutic imaging setup48
Figure 21 on the left side: Depiction of the photoacoustic
ultrasound imaging probe illustrating the coplanar arrangement of
the 18 fiber optical bundle and 128-element linear ultrasound
transducer array. On the right side: a photographic image for the
combined US/PA Vevo2100 system by VisualSonics49
Figure 22 US (left) and PA (right) images for cells loaded with
(a) 12 nm citrate stabilized and (b) PEGylated AuNPs, bright field
microscope images for gold nanoparticles (c) capped with citrate,
and (d) PEGylated AuNPs50
Figure 23 Variation of the PA signal with OD for cells loaded
with AuNPs capped with citrate, and PEGylated gold
nanoparticle52
Figure 24 UV-Vis spectra for AuNRs with different added
amounts of AgNO ₃ 55
Figure 25 TEM images of gold AuNRs56
Figure 26 PA spectra for gelatin inclusions with AuNRs, with
different aspect ratios shown in Figure 24 (a, b, c). Overlay US-
PA images for gelatin inclusions taken at the shown
corresponding peak wavelength are on top58
Figure 27 UV-Vis absorption of blue: PEGylated and red: silica
coated gold nanorods61
Figure 28 zeta potential of left: PEGylated and right: Silica
coated rods respectively
Figure 29 TEM image of silica coated gold nanorods
Figure 30 PA signal at different applied laser wavelengths for
cells loaded with (a) PEGylated, and (b) silica coated gold
nanorods
Figure 31 Overlay US-PA images for cells loaded with
(a)PEGylated and (b) Silica coated AuNRs65
Figure 32 Bright field microscope images of Left: PEGylated, and right: Silica coated nanorods

Figure 33 Energy level diagram illustrating the Rayleigh, Raman
Stokes, and anti-stokes processes
Figure 34 Raman spectrum showing Rayleigh, Stokes, and anti-
Stokes Raman bands73
Figure 35 Normal vibrational modes of molecules74
Figure 36 Mechanism of electromagnetic enhancement
Figure 37 Mechanism of chemical enhancement79
Figure 38 Schematic of the synthesized substrate82
Figure 39 The optical effect of increasing plating time on the
extinction spectrum of self-assembled homogeneous nanoparticle
layers83
Figure 40 SEM images for substrates with different plating time
a) no plating b) 1 min c) 3min d) 5min and e) 10 min plating time.
85
Figure 41 STM images for the label free biosensors with different
plating time (1)0 min, (b)1 min, (c)3 min, (d)5 min, and (e)10 min
plating time89
Figure 42 Arithmetic mean variations of surface roughnesss with
plating time as obtained from STM89
Figure 43 STM image showing a two touching SiO ₂ spheres
coated with a 60nm of gold shell90
Figure 44 Typical shift in the resonance peaks upon adsorption of
fibrinogen (black line: before fibrinogen adsorption, blue line:
after fibrinogen adsorption) for substrates composed of SiO ₂
coated with nanosphere array with Au seeding only92
Figure 45 shifts of the resonance position in the peaks around
400 nm and 600 nm upon fibrinogen adsorption for different
plating times93
Figure 46 A photographic image for the Raman machine94
Figure 47 diagram of the optical setup of the Raman machine95
Figure 48 Structure of Cresyl Violet96
Figure 49 SERS for Cresyl Violet molecule adsorbed on the
different substrates97