

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

The Prognostic Impact Philadelphia Like (CRLF2) Gene on the Outcome of Adult Acute Lymphoblastic Leukaemia

Thesis

Submitted for Partial Fulfillment of M. Sc. Degree in **Clinical Haematology**

By

Abdallah Sami Soliman Elkomy
M.B.B.Ch.

Under Supervision of

Prof. Dr/ Amal Mostafa Elafifi

Professor of Internal Medicine, Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Prof. Dr/ Nermeen Adel Nabih

Assistant Professor of Internal Medicine, Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Prof. Dr/ Haydi Sayed Mohamed

Lecturer of Internal Medicine- Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Prof. Dr/ Yasser Hassan Elnahas

Professor of Clinical Pathology and Hematology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr/ Amal Mostafa Elafifi,** Professor of Internal Medicine, Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr/ Mermeen**Adel Mabih, Assistant Professor of Internal Medicine,
Clinical Haematology and BMT, Faculty of Medicine, Ain
Shams University, for her sincere efforts, fruitful
encouragement.

I am deeply thankful to **Prof. Dr/ Haydi Sayed Mohamed**, Lecturer of Internal Medicine- Clinical
Haematology and BMT, Faculty of Medicine, Ain Shams
University, for her great help, outstanding support, active
participation and guidance.

Really I can hardly find the words to express my gratitude to **Prof. Dr/ Yasser Hassan Elnahas**, Professor of Clinical Pathology and Hematology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Abdallah Sami Soliman Elkomy

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	8
Introduction	1 -
Aim of the Work	3
Review of Literature	
Acute Lymphoblastic Leukemia	4
Philadelphia-Like Acute Lymphoblastic Leukem	ia64
Patients and Methods	92
Results	103
Discussion	120
Summary and Conclusion	125
Recommendations	127
References	128
Arabic Summary	

Tist of Tables

Table No	o. Title Page N	Jo.
Table 1:	WHO classification of acute lymphoblastic leukaemia	10
Table 2:	Causes of bleeding in hematologic malignancies	
Table 3:	Subclassification of T-ALL according to stages of normal thymocyte maturation	
Table 4:	Cytogenetic subtypes of precursor B-ALL and their clinicopathologic features	
Table 5:	Fusion gene rearrangements in Philadelphia like ALL	77
Table 6: Table 7:	Ph-like ALL clinical characteristics Summary of targetable lesions and the	
Table 8:	relevant clinical trials for Ph-like ALL Targeted therapies under investigation for Ph-	
Table 9:	Like ALL Comparing available diagnostic methods of Ph	
Table 10:	like ALL	
Table 11:	· ·	
Table 12:	Comparison between induction regimen and complete remission status (CR) at day 14 in	
Table 13:	1	
Table 14:	groups as regard baseline features:	108
Table 15:	response at day 14:	110
	groups as regard bone marrow aspirate results at Dav+28:	110

Tist of Tables cont...

Table No	o. Title Pag	ge No.
Table 16:	Comparison between CRLF2+ and CRL patients as regard Minimal residual dise	ase
Table 17:	(MRD) results at the end of induction: Comparison between CRLF2+ and CRL patients as regard overall survival (OS):	F2-
Table 18:	Correlation between patient therapy-rela factors as regard OS:	ited
Table 19:	Correlation between patient therapy-rela factors, as regard disease-free survival (DFS	ted
Table 20:	Comparison between CRLF+ and CRL groups as regard prognostic factors:	F2-
Table 21:	Subgroup analysis of CRLF2 status cytogenetics risk status as regard 1-year and DFS:	per OS

List of Figures

Fig. No.	Title Page	e No.
Figure 1:	Pertinent diagnostic findings in patien with ALL	
Figure 2:	The morphology of ALL/LBL in smears are paraffin-embedded tissue sections	nd
Figure 3:	Genomic breakdown of Ph-like ALL by a group	ge
Figure 4:	Algorithm for the identification of Ph-lil ALL	
Figure 5:	The CRLF2 Breakapart probe consists of red 243kb probe, which is centromeric to the CRLF2 gene, and two green probes (71k 131kb), which are telomeric to CRLF2	he ab,
Figure 6:	Prevalence of CRLF2 rearrangement patients	\mathbf{nt}
Figure 7:	Treatment allocation for the study group	
Figure 8:	Correlation between baseline covariates ar	nd
Figure 9:	Correlation between baseline covariates an DFS	nd
Figure 10:	Subgroup analysis of CRLF2 status p cytogenetics risk status as regard 1-year O	er
Figure 11:	Subgroup analysis of CRLF2 status p cytogenetics risk status as regard 1-year OFS	er ar

Tist of Abbreviations

Abb.	Full term
. SD	± Standard deviation
6-MP	
	O-mercapiopurme Antibody-dependent cell-mediated
ADCC	cytotoxicity
ΛΙΙ	Acute lymphoblastic leukemia
	Acute tymphootastic teakentia Allogeneic stem cell transplantation
	Acute myeloid leukemia
	Acute myeloid teukemias
	Acute myetota teakemias Adolescent and young adults
	Adolescent and young adults
BLNK	· ·
	Chimeric antigen receptor
	Complement-dependent cytotoxicity
	Confidence interval
	Central nervous system
	Children's Oncology Group
	Complete remission
	Cytokine receptor-like factor 2
	Colony stimulating factor 1 receptor
	Central Venous Line
	Difference of disease-free
	Disease-free survival
	Diacylglycerol kinase eta
	Transcription factor 3
	Early B-cell factor 1
<i>EPOR</i>	Erythropoietin receptor
FAB	French American British
FISH	Fluorescence in situ hybridization
<i>FLT</i> 3	Fms-related tyrosine kinase 3
<i>GEP</i>	Gene expression profiling
<i>HC</i>	Hierarchical clustering
HCVAD	Hyper-CVAD

Tist of Abbreviations cont...

Abb.	Full term
HR	Hazarde ratio
	Hematopoietic stem cell transplant
	Heat shock protein 90
<i>Ig</i>	-
	IKAROS family zinc finger 1
	IKAROS family zinc finger 3
	Interleukin-2 receptor
	Inotuzumab ozogamicin
	Janus Activated Kinase
LBLs	Lymphoblastic lymphomas
	Low Density Microarray
	Lactic acid dehydrogenase
	Myelodysplastic syndrome
<i>MHC</i>	Major histocompatibility complex
<i>MMAF</i>	Microtubule-disrupting agent monomethyl
	$auristatin \ F$
<i>MPO</i>	Myeloperoxidase
<i>MRD</i>	Minimal residual disease
<i>MTD</i>	Maximum tolerated dose
	Mammalian target of rapamycin
<i>NCCN</i>	National Comprehensive Cancer Network
	Next-generation sequencing
	Non-hodgkin lymphoma
	Neurotrophic receptor tyrosine kinase 3
<i>OS</i>	
	Prediction analysis of microarrays
<i>PAX5</i>	
	Pyrrolobenzodiazepine
	Philadelphia positive
	Phosphoinositide 3-kinase
PI3K/AKT	Phosphatidylinositol 3-kinase/protein
D/II	kinase B
<i>PT</i>	Prothrombin time

Tist of Abbreviations cont...

Abb.	Full term
DTK9R	Protein tyrosine kinase 2 beta
	Partial thromboplastin time
rALL	
	Relapse-free survival
	Reverse transcription polymerase chain
	reaction
<i>SJCRH</i>	St. Jude Children's Research Hospital
<i>T-ALL</i>	T-cell ALL
TCR	T-cell receptor
	Terminal deoxynucleotidyl transferase
	Tyrosine kinase inhibitors
	Thymic stromal lympho-poetin
TSLPR	Thymic stromal lymphopoietin protein
	receptor
<i>VCR</i>	
<i>WBC</i>	$White\ blood\ cell$

Introduction

cute lymphoblastic leukemia (ALL) is a heterogeneous disease characterized by the accumulation and proliferation of clonal lymphoid progenitor cells in the bone marrow, periphery, and/or extramedullary sites. The disease is frequently accompanied by suppression of hematopoiesis. B- and T-cell lymphoblastic leukemia cells express surface antigens that parallel their respective lineage developments (Pui & Jeha, 2007).

While ALL is known as a cancer success story in the pediatric setting, with cure rates approaching 90%, the same cannot yet be said in adults, with long-term disease-free survival (DFS) of around 40% to 45% (Thomas et al., 2010), depending on patient age and disease characteristics (Sive et al., 2012).

The inferior outcome of older patients has been linked to several factors, both disease-related (higher frequency of highrisk genomic subgroups such as Philadelphia chromosome [Ph+]) and patient-related (poor tolerance to chemotherapy). Recently, a high-risk subgroup of B-ALL called Ph-like ALL was identified in children and adolescents and young adults (AYAs), Ph-like ALL comprises up to 15% of childhood B-ALL, and 20% to 25% in AYAs (Roberts et al., 2014). Two broad genetic subgroups of Ph-like ALL have been identified. Approximately 50% of patients with Ph-like ALL have

overexpression of cytokine receptor-like factor 2 (CRLF2) (Herold et al., 2016). Almost half of the patients with CRLF2 overexpression have concomitant JAK-STAT mutations, most commonly JAK2 R683G, which result in JAK-STAT activation amenable to JAK inhibition (Ravandi et al., 2015).

In Ph-like ALL patients without CRLF2 overexpression, fusions involving JAK2, ABL1, ABL2, and many other tyrosine kinases are common, and many are amenable to ABLtype inhibitors (tyrosine kinase inhibitors [TKIs]) (fusions involving ABL1, ABL2, CSF1R, or PDGFRB) or JAK inhibitors (rearrangements of JAK2 and EPOR) (Iacobucci et al., 2016).

Several authors try to investigate Ph like mutation by several methods and explore the outcome with conflict results, there are conflicting data on the incidence and prognosis of Phlike ALL in adults. Some authors reported that outcomes of adult patients with Ph-like ALL, and significantly worse outcomes in the CRLF2 subset of Ph-like ALL (Perez-Andreu et al., 2015). Thus, genomic characterization of Ph-like ALL has significant therapeutic implications with the emerging use of kinase inhibitors in this patient population (Loh et al., 2015).