

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY



### Diagnostic role of PET CT in hepatocellular carcinoma compaired with triphasic CT imaging

#### Thesis

Submitted in Partial Fulfillment for the Master Degree in Radiology

# Presented by Yasmine Emad Aldin Hassan Allam.

M.B., B. Ch.
Faculty of Medicine Ain Shams University

#### Under supervision of

### Ass. Prof. Dr. Zenat Ahmed Alsabbagh

Assistant Professor of Radiology Faculty of Medicine - Ain Shams University

### Ass. Prof. Dr. Ahmed Samy Abdelrahman

Assistant Professor of Radiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021



سورة البقرة الآية: ٣٢

# Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Ass. Prof. Dr. Zenat Ahmed Alsabbagh, Assistant Professor of Radiology, Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Ahmed Samy Abdelrahman, Assistant Professor of Radiology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Yasmine Emad

# List of Contents

| Title                              | Page No. |
|------------------------------------|----------|
| List of Abbreviations              | i        |
| List of Tables                     | iii      |
| List of Figures                    | iv       |
| Introduction                       | 1        |
| Aim of Study                       | 3        |
| Review of Literature               |          |
| Imaging Anatomy of the Liver       | 4        |
| Pathology of HCC                   | 11       |
| PET/CT Physics and Instrumentation | 23       |
| Patients and Methods               | 44       |
| Results                            | 51       |
| Case Presentation                  | 67       |
| Discussion                         | 77       |
| Summary                            | 80       |
| Conclusion                         | 83       |
| Recommendations and Limitations    | 84       |
| References                         | 85       |
| Arabic Summary                     |          |

### List of Abbreviations

| Abb. Full term                                             | _ |
|------------------------------------------------------------|---|
| <sup>18</sup> F-FDG <sup>18</sup> F-fludeoxyglucose        |   |
| AASLD American Association for the Study of Liver Diseases |   |
| AFPAlpha feto -protein                                     |   |
| AUC Area under curve                                       |   |
| BCLC Barcelona clinic liver cancer                         |   |
| CAContrast agent                                           |   |
| CBD Common bile duct                                       |   |
| CHA Common hepatic artery                                  |   |
| CHD Common hepatic duct                                    |   |
| CM Contrast media                                          |   |
| CTComputed tomography                                      |   |
| GB Gall bladder                                            |   |
| GDA Gastro-duodenal artery                                 |   |
| HAP Hepatic artery proper                                  |   |
| HCC Hepatocellular carcinoma                               |   |
| HFL hepatic focal lesion                                   |   |
| HV Hepatic vein                                            |   |
| IVC Inferior vena cava                                     |   |
| LHA Left hepatic artery                                    |   |
| LHVLeft hepatic vein                                       |   |
| LNlymph node                                               |   |
| LOR Line of response                                       |   |
| LPV Left portal vein                                       |   |
| MHVMiddle hepatic vein                                     |   |
| MPV Main portal vein                                       |   |

### List of Abbreviations Cont...

| Abb. | Full term                                 |
|------|-------------------------------------------|
| MDI  | Magnatia magananas imaggin g              |
|      | . Magnetic resonance imaging              |
| NPV  | . Negative predictive value               |
| PET  | . Positron emission tomography            |
| PPV  | . Positive predictive value               |
| PV   | . Portal vein                             |
| RHA  | . Right hepatic artery                    |
| RHV  | Right hepatic vein                        |
| ROC  | . Receiver operating characteristic curve |
| RPV  | . Right portal vein                       |
| SMV  | . Superior mesenteric vein                |
| SUV  | . Standardized uptake value               |
| SV   | . Splenic vein                            |
| US   | . Ultrasound                              |

# List of Tables

| Table No.          | Title                                                                                     | Page No.  |
|--------------------|-------------------------------------------------------------------------------------------|-----------|
| <b>Table (1):</b>  | American Joint Committee on Cancer 7th edition                                            |           |
| <b>Table (2):</b>  | Demographic data of the studied patie                                                     | ents51    |
| <b>Table (3):</b>  | Results of PET CT based on numpatients and tumors                                         |           |
| <b>Table (4):</b>  | Results of Tiphasic CT scan bas<br>number patients and tumors                             |           |
| <b>Table (5):</b>  | Comparison between PET CT and tr<br>CT and gold standerd results regarding<br>metastases. | ng HCC    |
| <b>Table (6):</b>  | Showing Comparison between PET C<br>and Triphasic CT results regarding<br>data            | tumor     |
| <b>Table (7):</b>  | Comparison between PET CT and Tr<br>CT regarding metastases data                          | _         |
| <b>Table (8):</b>  | Shows comparison between PET C triphasic CT regarding tumors                              |           |
| <b>Table (9):</b>  | Shows comparison between PET C<br>Triphasic CT regarding mets by<br>standard              | y gold    |
| <b>Table (10):</b> | Shows tumor results regarding PET C                                                       | T scan 64 |
| <b>Table (11):</b> | Shows cut off point, AUC, sense specificity, PPV, NPV and accur SUVmax, SUVratio          | acy of    |

## List of Figures

| Fig. No.               | Title                                                                                                                                              | Page No.         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Fig. (1):<br>Fig. (2): | Anatomy of the liver segments<br>Cross sectional anatomy of the<br>segments                                                                        | liver            |
| Fig. (3):              | Radiographic segmental anatomy liver by computed tomography (CT)                                                                                   |                  |
| Fig. (4):              | Normal hepatic arterial anatomy                                                                                                                    | 8                |
| Fig. (5):              | Normal portal venous image from a portography shows the portal vein branching into the left portal vein                                            | n (PV)<br>(LPV)  |
| T' (0)                 | and right portal vein (RPV)                                                                                                                        |                  |
| Fig. (6):              | Hepatic venous confluence                                                                                                                          |                  |
| Fig. (7):              | Growth pattern of progressed hepatoc carcinoma                                                                                                     |                  |
| Fig. (8):              | Stepwise pathway of carcinogenesis fo in cirrhosis                                                                                                 |                  |
| Fig. (9):              | Photomicrograph shows a regenerate nodule surrounded by septa (curved a which contain a number of portal vein                                      | arrow),          |
| Fig. (10):             | Positron Decay                                                                                                                                     |                  |
| Fig. (11):             | Positron–electron annihilation reaction                                                                                                            |                  |
| Fig. (12):             | (a) True coincidence (b) Scatter coince (c) Random coincidence                                                                                     | eidence          |
| Fig. (13):             | Illustrative diagram of combined P scanner components                                                                                              | ET/CT<br>29      |
| Fig. (14):             | FDG is actively taken up by g<br>transport proteins into the cell. With<br>cell, FDG is metabolized to E<br>phosphate, which is metabolically trap | in the<br>DG-6-  |
| Fig. (15):             |                                                                                                                                                    | ftware<br>in the |

# List of Figures Cont...

| Fig. No.                 | Title                                                                                                  | Page No. |
|--------------------------|--------------------------------------------------------------------------------------------------------|----------|
| Fig. (16):<br>Fig. (17): | Normal distribution of FDGShows normal fused abdominal PE exam                                         | T-CT     |
| Fig. (18):               | Benign ovarian <sup>18</sup> F-FDG uptake in a 22 old female                                           | -year-   |
| Fig. (19):               | Misregistration artifact                                                                               | 41       |
| Fig. (20):               | Attenuation correction artifact                                                                        | 42       |
| Fig. (21):               | PET/CT showing areas of increased <sup>18</sup> F uptake correlating to lesions in segment III, and IV | nts II,  |
| Fig. (22):               | Showing age distribution of patients on their number.                                                  | based    |
| Fig. (23):               | PET scan results per patient                                                                           | 53       |
| Fig. (24):               | PET scan results per tumors                                                                            | 53       |
| Fig. (25):               | Bar chart showing segmental distribut tumors by PET/ CT scan                                           |          |
| Fig. (26):               | Showing staging of HCC by PET/ CT so                                                                   |          |
| Fig. (27):               | Showing triphasic results per patients.                                                                |          |
| Fig. (28):               | Showing triphasic results per tumor                                                                    |          |
| Fig. (29):               | Bar chart showing results of metastas<br>PET/CT, triphasic CT and gold standar                         | ses by   |
| Fig. (30):               | Bar chart showing comparison bet PET/ CT and triphasic CT per patient tumors                           | s and    |
| Fig. (31):               | Bar chart showing staging of regarding PET/CT and triphasic CT                                         | HCC      |
| Fig. (32):               | Showing tumor size by PET/CT triphasic CT                                                              | and      |
| Fig. (33):               | Bar chart showing percentage of pometastases by PET/CT and triphasic C                                 |          |

# List of Figures Cont...

| Fig. No.   | Title                                                      | Page No. |
|------------|------------------------------------------------------------|----------|
| Fig. (34): | Shows metastase size by PET/C7 triphasic CT.               |          |
| Fig. (35): | Showing SUV max range and med positive and negative cases  |          |
| Fig. (36): | Bar chart showing SUV ratio me positive and negative cases |          |
| Fig. (37): | Shows sensitivity and specificity of max and SUV ratio     |          |
| Fig. (38): | Case 1                                                     | 67       |
| Fig. (39): | Case 2                                                     | 69       |
| Fig. (40): | Case 3                                                     | 71       |
| Fig. (41): | Case 4                                                     | 73       |
| Fig. (42): | Case 5                                                     | 74       |
| Fig. (43): | Case 6                                                     | 75       |
| Fig. (44): | Case 7                                                     | 76       |

### Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. It ranks as the fifth most common tumor in the world and the third most common cause of cancer-related death. In recent decades, HCC age-adjusted incidence rates have doubled. This is largely due to an increasing prevalence of ailments that predispose to hepatic cirrhosis, such as chronic viral hepatitis, obesity, and alcohol abuse (*Gomaa*, 2020).

Prognosis of patients with HCC is usually poor, and predicting life expectancy is difficult because of variable factors such as portal vein (PV) thrombosis, tumor stage, and high recurrence rate of the tumor. Accurate staging of HCC is crucial because only patients with small tumors (<5 cm) without distant metastasis would benefit from liver resection or liver transplantation as a curative treatment (*Cho et al.*, 2017).

Imaging techniques are a key tool for clinical decision. The development of ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) has allowed the detection and diagnosis of liver tumors at an asymptomatic stage, and this has modified their diagnostic approach and treatment. Indeed, some of the effective therapies are image guided. Further more, evaluation of treatment and follow-up are done through imaging. Hence, understanding of the information provided by imaging techniques is critical for the clinician in charge of liver cancer patients (Bruix&Sherman., 2010).



Residual, recurrent, and metastatic lesions of HCC are not detected well by traditional imaging such as MRI or CT because these modalities detect morphologic changes, which can occur quite slowly in HCC. A more effective modality seems to be positron emission tomography (PET/CT) using the exogenous contrast agent (CA) <sup>18</sup>F-fludeoxyglucose (<sup>18</sup>F-FDG) can scan the whole body (Liao et al., 2018).

PET/CT is an imaging modality using positron-emitting markers. The most commonly used marker in evaluating cancer patients is <sup>18</sup> F-FDG, an analogue of glucose, used in processes of glucose metabolism. Glucose metabolism increases rapidly in dividing and growing cells causing an increased uptake of 18 F-FDG (Croteau et al., 2016).

In some cancers, <sup>18</sup> F-FDG scanning especially when merged with CT, is highly sensitive in the staging of the malignancies, and can be used in management of individual patients. This modality has been established as a diagnostic tool of various cancers' (Guo et al., 2007).

PET/CT is useful to detect distant metastasis. Evidence supports a relationship between PET/CT imaging and degree of tumor differentiation. PET/CT emerged as a highly effective nuclear imaging tool for diagnostic setup, treatment allocation, and assessment of post-interventional tumor response in medical and surgical oncology (Kornberg and Freiss, 2019).