

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Serum Erythroferrone in End Stage Renal Disease Patients; Relation to Iron Status, Anemia and Erythropoiesis Stimulating Agents

A Thesis

Submitted for partial Fulfillment of Master Degree in Clinical Pathology

Presented By

Aya-t Allah Mohamad Mahmoud Abdelghany *M.B.B.Ch.*

Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Amal Abd-El-Hamid Mohamad

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Prof. Dr. Hayam Ahmed Hebah

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Dalia Ahmed Diaa ElDine Salem

Assist. Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amal Abd-El- Hamid Mohamad,** Professor of Clinical Pathology Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Dalia Ahmed Diaa ElDine Salem,** Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Tbayam**Ahmed Tbebah, Professor of Internal Medicine,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

Last but not least, I dedicate this work to my family and friends whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Aya-t Allah Mohamad Mahmoud Abdelghany

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vii
Introduction	1
Aim of the Work	3
Review of Literature:	
Anemia in CKD	4
Erythropoietin and iron regulation	22
Erythrferrone in CKD	40
Subjects and Methods	47
Results	53
Discussion	91
Summary	97
Conclusion	
Recommendations	100
References	
Arabic Summary	

Tist of Tables

Table No	. Title	Page No.
Table (1):	Global prevalence of anemia	5
Table (2):	Prevalence of anemia in Egypt	6
Table (3):	Underlying causes of ACD	6
Table (4):	Features of anemia of inflammation.	13
Table (5):	Description of demographic, clinical and lab data of all patients.	•
Table (6):	Description of demographic data of control group	p 56
Table (7):	Comparison between both control and groups according to the demographic data	
Table (8):	Comparison between control and all according to baseline Erythroferrone level	patients 57
Table (9):	Comparison between control and both subgroups according to baseline Erythroferrone l	
Table (10):	Comparison between control group and all according to the post-treatment Erythroferrone le	±
Table (11):	Comparison between control group and subgroups according to the post-trouble Erythroferrone level.	eatment
Table (12):	Comparison between baseline and post-according to laboratory data in all patients	
Table (13):	Comparison between patients' subgroups as the demographic, clinical and baseline lab data.	oratory
Table (14):	Comparison between patients' subgroups as post-treatment laboratory data	_
Table (15):	Comparison between both patients' subgroup 1 and subgroup 2) as regard change in laboratory data:	s delta

Tist of Tables (Cont...)

Table No.	. Title	Page No.
Table (16):	Comparison between baseline and post-treaccording to laboratory data in su 1(treatment with iron and erythropoietin)	bgroup
Table (17):	Comparison between baseline and post treatment with iron only):	oup 2
Table (18):	Erythroferrone correlation with demogra- laboratory data in all patients at baseline and post	L .
Table (19):	Erythroferrone correlation with demographic and data in subgroup 1 at baseline and post treatment.	•
Table (20):	Erythroferrone (ng/L) correlation with demogrand laboratory data in subgroup 2 at baseli post treatment	ne and
Table (21):	Comparison between HCV positive and negative patients according to Erythroferron in subgroup 1	ie level
Table (22):	Comparison between hypertensive and hypertensive patients according to Erythro in subgroup 1:	non- ferrone
Table (23):	Comparison between diabetic and non-caccording to Erythroferrone in subgroup 1	liabetic
Table (24):	Comparison between HCV positive and negative according to Erythroferrone in subgr	
Table (25):	Comparison between hypertensive and hypertensive according to Erythroferro subgroup 2:	ne in
Table (26):	Comparison between diabetic and non-caccording to Erythroferrone in subgroup 2:	

Tist of Figures

Fig. No.	Title	Page	No.
Figure (1):	Erythropoietin is essential for terminal matura erythrocytes.		9
Figure (2):	Erythropoietin Dependent and Iron Dependent Erythropoiesis		10
Figure (3):	Distribution of iron in the adult human bod regulation of iron traffic.	•	17
Figure (4):	Biological structure of EPO		24
Figure (5):	Scheme of erythropoiesis.		26
Figure (6):	Control of EPO production. HIF2α, hy inducible factor 2α; HIF β, hypoxia-inducible β; PDHs, O2 and iron-dependent HIF prohydroxylases; UQ, ubiquitin; CBP, CREB-b protein; EPO, erythropoietin	factor olyl-4- inding	27
Figure (7):	Iron recycling via the reticuloendothelial s Approximate proportion of body iron stores in system are indicated in parentheses	n each	37
Figure (8):	Erythroferrone in systemic iron homeostasis		41
Figure (9):	Risk factors distribution among patients group.		55
Figure (10):	Comparison between control and all p according to baseline Erythroferrone level		58
Figure (11):	Comparison between control and both p subgroups according to baseline Erythroferrone le		58
Figure (12):	Comparison between control group and all paccording to the post-treatment Erythroferrone level	-	60
Figure (13):	Erythroferrone level (ng/L) comparison be control and both patient subgroups post-treatm		60
Figure (14):	Comparison between baseline and post treat according to Hb(g/dl) in all patients		62
Figure (15):	Comparison between baseline and post trea according to HCT% in all patients		62
Figure (16):	Comparison between baseline and post trea according to S.iron(µg/dl) in all patients	atment	

Tist of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (17):	Comparison between baseline and post transaccording to $TIBC(\mu g/dl)$ in all patients		63
Figure (18):	Comparison between baseline and post treaccording to TSAT% in in all patients		64
Figure (19):	Comparison between baseline and post-treaccording to Erythroferrone(ng/L) in all patie		64
Figure (20):	Comparison between subgroup 1 and subgaccording to baseline Hb(g/dl)		66
Figure (21):	Comparison between subgroup 1 and subgaccording to baseline HCT%	_	67
Figure (22):	Comparison between subgroup 1 and subgaccording to baseline Erythroferrone (ng/L)		67
Figure (23):	Comparison between subgroup 1 and subgaccording to post treatment Hb(g/dl)		69
Figure (24):	Comparison between subgroup 1 and subgaccording to post treatment HCT%	_	70
Figure (25):	Comparison between subgroup 1 and subgaccording to post treatment TIBC(μ g/dl)		70
Figure (26):	Comparison between subgroup 1 and subgaccording to post Erythroferrone (ng/L)	group 2	
Figure (27):	Comparison between subgroup 1 and subgaccording to delta change between baseli post-treatment in Erythroferrone level (ng/L).	group 2 ne and	
Figure (28):	Comparison between baseline and post transcording to Hb (g/dl) in subgroup 1	eatment	
Figure (29):	Comparison between baseline and post treaccording to HCT% in subgroup 1	eatment	
Figure (30):	Comparison between baseline and post traccording to Serum Iron (µg/dl) in subgroup		76
Figure (31):	Comparison between baseline and post treaccording to TIBC (µg/dl) in subgroup 1		76