

# بسم الله الرحمن الرحيم



-Call 4000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





# جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

# قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار













بالرسالة صفحات لم ترد بالأصل







# NOVEL ACTIVE LEARNING BASED APPROACHES FOR BALANCING MULTI-OBJECTIVE MAXIMIZATION USING TRADE-OFF BETWEEN EXPLORATION AND EXPLOITATION

By

#### **Dina Ahmed Mohamed Elreedy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

**DOCTOR OF PHILOSOPHY** 

in

**Computer Engineering** 

#### NOVEL ACTIVE LEARNING BASED APPROACHES FOR BALANCING MULTI-OBJECTIVE MAXIMIZATION USING TRADE-OFF BETWEEN EXPLORATION AND EXPLOITATION

By

#### **Dina Ahmed Mohamed Elreedy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

Under the Supervision of

Prof. Dr. Samir I. Shaheen Prof. Dr. Amir Fouad Surial Atiya

......

Emeritus Professor Emeritus Professor

Computer Engineering Computer Engineering

......

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

#### NOVEL ACTIVE LEARNING BASED APPROACHES FOR BALANCING MULTI-OBJECTIVE MAXIMIZATION USING TRADE-OFF BETWEEN EXPLORATION AND EXPLOITATION

By

#### **Dina Ahmed Mohamed Elreedy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in **Computer Engineering** 

Approved by the Examining Committee:

Prof. Dr. Samir I. Shaheen,

Prof. Dr. Reda Abdelwahab Alkhorabey,

Professor, Faculty of Computers and Information, Cairo University

Prof. Dr. Mohamed Zaki Abdelmegeed,

External Examiner

Emeritus Professor, Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Dina Ahmed Mohamed Elreedy

**Date of Birth:** 10/9/1990 **Nationality:** Egyptian

E-mail: dinaelreedy@eng.cu.edu.eg

**Phone:** +201285302930

**Address:** 255 Sudan Street, Giza, Egypt, 11241

**Registration Date:** 1/3/2017 **Awarding Date:** ../../2020

**Degree:** Doctor of Philosophy **Department:** Computer Engineering

**Supervisors:** 

Prof. Dr. Samir I. Shaheen

Prof. Dr. Amir Fouad Surial Atiya

**Examiners:** Prof. Dr. Samir I. Shaheen (Thesis main advisor)

Prof. Dr. Reda Abdelwahab Alkhorabey

**Professor** 

Faculty of Computers and Information, Cairo University

Prof. Dr. Mohamed Zaki Abdelmegeed (External examiner)

**Emeritus Professor** 

Faculty of Engineering, Al-Azhar University

#### **Title of Thesis:**

Novel Active Learning based Approaches for Balancing Multi-Objective Maximization Using Trade-off between Exploration and Exploitation

#### **Key Words:**

active learning; exploration-exploitation; mutual information; Kullback-Leibler divergence; query synthesis

#### **Summary:**

In this thesis, we develop two novel approaches for optimization problems incurring exploration-exploitation trade-off. First, we propose a new comprehensive active learning framework including exploration-based, exploitation-based, and balancing methods. Second, we develop several analytical formulations for handling exploration-exploitation trade-off by explicitly incorporating an exploration term depending on the learning model uncertainty. We apply our proposed approaches to an operations research related application which is dynamic pricing with demand learning. We perform experiments on synthetic and real datasets. The experimental results show superior performance of our proposed approaches in terms of the achieved utility (exploitation) and estimated model error (exploration).



(Internal examiner)

### **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Dina Ahmed Mohamed Elreedy Date: ../../2020

Signature:

## **Dedication**

To my lovely supportive parents for their unconditional love and care, and to my supportive success partner, my husband, Mohab.

## Acknowledgements

First of all, I praise and thank ALLAH, The Most Gracious, The Most Merciful, for helping me to finish this work.

I would like to thank my supervisors, Prof. Samir Shaheen and Prof. Amir Atiya, for their full support and encouragement. My advisors both always provide me with knowledge, precious advice, and guidance.

I would like to thank Prof. Nevin Darwish for her support and helpful comments.

I would like to thank my beloved parents and brothers for their prayers, care, full support, and encouragement.

I would like to thank my husband for his care, full support and encouragement.

I would like to thank all the computer engineering department staff for their help and support during my undergraduate and postgraduate studies.

# **Table of Contents**

| LIST C | OFTABLES                                        |                                                   |      |  |  |  |  |  |
|--------|-------------------------------------------------|---------------------------------------------------|------|--|--|--|--|--|
| LIST C | ST OF FIGURES                                   |                                                   |      |  |  |  |  |  |
| LIST C | LIST OF ALGORITHMS                              |                                                   |      |  |  |  |  |  |
| NOME   | NCLAT                                           | TURE                                              | xi   |  |  |  |  |  |
| ABSTR  | RACT                                            |                                                   | xiii |  |  |  |  |  |
| CHAP   | ΓER 1:                                          | INTRODUCTION                                      | 1    |  |  |  |  |  |
| 1.1    | OVER                                            | RVIEW                                             | 1    |  |  |  |  |  |
|        | 1.1.1                                           | Active Learning                                   | 1    |  |  |  |  |  |
|        | 1.1.2                                           | The Exploration-Exploitation Trade-off            | 2    |  |  |  |  |  |
|        | 1.1.3                                           | Case Study: Dynamic Pricing with Demand Learning  | 2    |  |  |  |  |  |
| 1.2    | CONT                                            | TRIBUTIONS                                        | 3    |  |  |  |  |  |
| 1.3    | ORGA                                            | ANIZATION OF THE THESIS                           | 3    |  |  |  |  |  |
| CHAP   | ΓER 2:                                          | LITERATURE REVIEW                                 | 5    |  |  |  |  |  |
| 2.1    | ACTIVE LEARNING                                 |                                                   |      |  |  |  |  |  |
|        | 2.1.1                                           | Active Learning Overview                          | 5    |  |  |  |  |  |
|        | 2.1.2                                           | Active Learning for Regression Tasks              | 6    |  |  |  |  |  |
|        | 2.1.3                                           | Information-theoretic based Active Learning       | 7    |  |  |  |  |  |
|        | 2.1.4                                           | Active Learning for Objective Optimization        | 8    |  |  |  |  |  |
| 2.2    | HANDLING THE EXPLORATION-EXPLOITATION TRADE-OFF |                                                   |      |  |  |  |  |  |
|        | 2.2.1                                           | Exploration-Exploitation Trade-off in Game Theory | 10   |  |  |  |  |  |
| 2.3    | DYNA                                            | AMIC PRICING WITH DEMAND LEARNING                 | 10   |  |  |  |  |  |
| CHAP   | ΓER 3:                                          | PROBLEM FORMULATION AND REGRESSION MODELS         | 12   |  |  |  |  |  |
| 3.1    | PROB                                            | LEM FORMULATION                                   | 12   |  |  |  |  |  |

| 3.2   | PRELIMINARIES: REGRESSION MODELS                 |               |                                                    |    |  |  |
|-------|--------------------------------------------------|---------------|----------------------------------------------------|----|--|--|
|       | 3.2.1                                            | Bayesian      | Linear Regression                                  | 13 |  |  |
|       | 3.2.2                                            | Recursive     | e Formulation of Weighted Linear Regression        | 15 |  |  |
|       |                                                  | 3.2.2.1       | Estimating the Noise Variance Parameter $\sigma^2$ | 16 |  |  |
| СНАРТ | ΓER 4:                                           | PROPOS        | ED ACTIVE LEARNING FRAMEWORK                       | 18 |  |  |
| 4.1   | NOTA                                             | TION          |                                                    | 18 |  |  |
| 4.2   | PROPOSED ACTIVE LEARNING FRAMEWORK               |               |                                                    |    |  |  |
|       | 4.2.1 Active Learning Schemes                    |               |                                                    |    |  |  |
|       | 4.2.2                                            | Explorati     | ion-based Strategies                               | 21 |  |  |
|       |                                                  | 4.2.2.1       | Mutual Information (MI)                            | 22 |  |  |
|       |                                                  | 4.2.2.2       | Modified Mutual Information (MMI)                  | 25 |  |  |
|       |                                                  | 4.2.2.3       | Kullback–Leibler Divergence (KL)                   | 26 |  |  |
|       |                                                  | 4.2.2.4       | Model Entropy (ME)                                 | 28 |  |  |
|       | 4.2.3                                            | Exploitat     | ion-based Strategies                               | 30 |  |  |
|       |                                                  | 4.2.3.1       | Greedy Strategy (G)                                | 30 |  |  |
|       |                                                  | 4.2.3.2       | Expected Value of Perfect Information (EVPI)       | 30 |  |  |
|       | 4.2.4                                            | Balancin      | g Exploration and Exploitation Strategies          | 31 |  |  |
|       |                                                  | 4.2.4.1       | Upper Confidence Bound (UCB)                       | 32 |  |  |
|       |                                                  | 4.2.4.2       | Probabilistic-based Exploration-Exploitation (PEE) | 32 |  |  |
|       |                                                  | 4.2.4.3       | Uncertainty of Strategy (UoS)                      | 33 |  |  |
|       |                                                  | 4.2.4.4       | Utility minus Model Entropy (UME)                  | 35 |  |  |
| 4.3   | CASE STUDY: DYNAMIC PRICING WITH DEMAND LEARNING |               |                                                    |    |  |  |
|       | 4.3.1                                            | Active L      | earning Framework Application                      | 36 |  |  |
|       |                                                  | 4.3.1.1       | Exploration-based Strategies                       | 36 |  |  |
|       |                                                  | 4.3.1.2       | Exploitation-based Strategies                      | 37 |  |  |
|       |                                                  | 4.3.1.3       | Balancing Exploration and Exploitation Strategies  | 38 |  |  |
| CHAP  | ΓER 5:                                           | HYBRID        | OBJECTIVE FORMULATIONS                             | 41 |  |  |
| 5.1   | INTRO                                            | ODUCTIO       | N                                                  | 41 |  |  |
| 5.2   | FORM                                             | FORMULATION 1 |                                                    |    |  |  |
| 5.3   | 3 FORMULATION 2                                  |               |                                                    |    |  |  |
| 5.4   | 4 FORMULATION 3                                  |               |                                                    |    |  |  |

| CHA  | PT         | ER 6: I     | EXPERIMENTS AND RESULTS                                 | 46 |  |  |  |
|------|------------|-------------|---------------------------------------------------------|----|--|--|--|
| 6.   | 1          | ACTIV       | 'E LEARNING FRAMEWORK                                   | 46 |  |  |  |
|      |            | 6.1.1       | Experimental Setup                                      | 46 |  |  |  |
|      |            | 6.1.2       | Experiments Using Synthetic Datasets                    | 48 |  |  |  |
|      |            | 6.1.3       | Experiments Using Real Datasets                         | 49 |  |  |  |
| 6.2  | 2          | HYBR        | ID OBJECTIVE FORMULATIONS                               | 61 |  |  |  |
|      |            | 6.2.1       | Experimental Setup                                      | 61 |  |  |  |
|      |            | 6.2.2       | Experiments using Synthetic Datasets                    | 62 |  |  |  |
|      |            | 6.2.3       | Experiments using Real datasets                         | 63 |  |  |  |
| СНА  | PTI        | ER 7: I     | DISCUSSION AND CONCLUSIONS                              | 70 |  |  |  |
| 7.   | 1          | DISCU       | SSIONS                                                  | 70 |  |  |  |
|      |            | 7.1.1       | Active Learning Framework                               | 70 |  |  |  |
|      |            | 7.1.2       | Hybrid Objective Formulations                           | 76 |  |  |  |
| 7.   | 2          | CONCLUSIONS |                                                         |    |  |  |  |
| 7.   | 3          | FUTURE WORK |                                                         |    |  |  |  |
| REFI | REFERENCES |             |                                                         |    |  |  |  |
|      |            |             | ENDIX A: UTILITY DERIVATIVES FOR HYBRID OBJECTIVE TIONS | 89 |  |  |  |
| A.   | .1         | HYBR        | ID OPTIMIZATION FORMULATION 1                           | 90 |  |  |  |
| A.   | .2         | HYBR        | ID OPTIMIZATION FORMULATION 2                           | 91 |  |  |  |
| Δ    | 3          | HVRR        | ID OPTIMIZATION FORMULATION 3                           | 92 |  |  |  |