

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Mean Platelet Volume VS C-Reactive Protein as a Prognostic Marker in Sepsis in ICU

Thesis

Submitted for Partial Fulfillment of Master Degree in Ontensive Care Medicine

Presented by

Hossam Magdy Awad

 $M.B.\ B.Ch.$

Faculty of Medicine - Misr University for Science and Technology

Supervised by

Prof. Dr. Sherif Farouk Ibrahim El Shantory

Professor of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine – Ain Shams University

Dr. Sanaa Mohamed Mohamed El Fawal

Assistant Professor of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine – Ain Shams University

Dr. Ahmed Wagih Ezzat

Lecturer of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2021

سورة البقرة الآية: ٣٢

Acknowledgment

All praise are to **Allah** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

My deepest gratitude to **Prof. Dr. Sherif Farouk Ibrahim El Shantory,** Professor of Anesthesia, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Sanaa Mohamed**Mohamed El Fawal, Assistant Professor of Anesthesia, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Ahmed**Wagih Ezzat, Lecturer of Anesthesia, Intensive Care
Medicine and Pain Management, Faculty of Medicine, Ain
shams University, for guiding me throughout this work and
for granting me much of his time. I greatly appreciate his
efforts.

Special thanks to my Parents and all My family members for their continuous encouragement, enduring me and standing by me.

Hossam Magdy Awad

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1 -
Aim of the Work	3
Review of Literature	
Sepsis	4
Mean Platelete Volume	24
Patients and Methods	40
Results	46
Discussion	59
Conclusion	65
Recommendations	66
Summary	67
References	70
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Comparison of older and new definithe spectrum of sepsis and septic sho	
Table (2):	The APACHE II severity of classification system.	
Table (3):	Sequential (sepsis-related) organ assessment score.	
Table (4):	Demographic characteristics, history and type of surgery in the sample according to the outcome	studied
Table (5):	CBC parameters follow-up in the sample according to the outcome	
Table (6):	CRP & MPV levels in the studied according to the outcome	-
Table (7):	Vital signs follow-up in the studied according to the outcome	-
Table (8):	APACHE and SOFA scores in the sample according to the outcome	
Table (9):	Correlation between MPV and variables in the current study	
Table (10):	Diagnostic profile of MPV at presen predicting mortality in the studied s	
Table (11):	Diagnostic profile of SOFA at present predicting mortality in the studied sat	
Table (12):	Diagnostic profile of APACI presentation in predicting mortalit studied sample	y in the
Table (13):	Diagnostic profile of CRP at presen predicting mortality in the studied sa	

Tist of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Clinical manifestations by orga Factors influencing PLT and M	•
Figure (3):	Roc curve for MPV at prese predicting non survivors in the sample	ntation in he studied
Figure (4):	Roc curve for SOFA at prese predicting non survivors in the sample	he studied
Figure (5):	Roc curve for APACHE at prese predicting non survivors in the sample	he studied
Figure (6):	Roc curve for CRP at prese predicting non survivors in the sample	he studied
Figure (7):	Relation between MPV, CRP, SOFA and mortality on admiss:	,
Figure (8):	Relation between MPV, CRP, SOFA and mortality On day 2.	,
Figure (9):	Relation between MPV, CRP, SOFA and mortality On day 5.	•
Figure (10):	Relation between MPV, CRP, SOFA and mortality On day 7.	APACHE,
Figure (11):	Relation between MPV, CRP, SOFA and mortality on day 10.	APACHE,

Tist of Abbreviations

Abb.	Full term
AKI	Acute Kidney Injury
<i>APACHE</i>	Acute Physiology, Age and Chronic Health Evaluation
ARDS	Acute Respiratory Distress Syndrome
<i>CRP</i>	C-Reactive Protein
DASH	Dietary Approaches to Stop Hypertension
<i>DIC</i>	Disseminated Intravascular Coagulation
EDTA	Ethylene Diamine Tetra Acetic Acid
<i>EGDT</i>	Early Goal-Directed Therapy
GCS	Glasgow Coma Score
GWAS	Genome-Wide Association Studies
HRT	Hormone Replacement Therapy
<i>ICU</i>	Intensive Care Unit
<i>LPS</i>	Lipopoly saccharide
<i>MAP</i>	Mean Arterial Pressure
<i>MPM</i>	Mortality Probability Model
<i>MPV</i>	Mean Platelet Volume
<i>Na</i> +	Sodium
<i>NO</i>	Nitric Oxide
OR	Odds Ratio
oxLDLs	Oxidized Low-Density Lipoproteins
PCh	Phosphocholine
<i>PDW</i>	Platelet distribution width
PheWAS	Phenome-Wide Association Studies

Tist of Abbreviations (Cont...)

Abb.	Full term
PHT	.Prehypertension
PPV	.Pulse-Pressure Variation
<i>RR</i>	.Respiratory Rate
<i>SAPS</i>	.Simplified Acute Physiology Score
SOFA	.Sequential Organ Failure Assessment
WES	.Whole Exome Sequencing
WGS	.Whole Genome Sequencing

Introduction

epsis was first mentioned in Homer's poems around 2,700 years ago. The word "sepsis" comes from the word (sipsi), which in original Greek means decomposition of organic matter. During the late 19th and the 20th centuries, sepsis was described as a systemic infection supposedly caused by the invasion of the blood stream by pathogenic microorganisms. However, patients still died of sepsis even when the microorganisms had been eradicated with antibiotics (Majno, 1991).

Sepsis and septic shock are major healthcare problems, affecting millions of people around the world each year and killing as many as one in four and often more (Angus et al., 2001).

Similar to polytrauma, acute myocardial infarction, or stroke, early identification and appropriate management in the initial hours after sepsis develops improved outcomes (Dellinger et al., 2013).

C-reactive protein (CRP) is a liver-derived plasma protein; its concentration significantly increases in inflammatory processes in response to IL-6. CRP aggregates with damaged cells, apoptosis fragments, and bacterial, fungal (Pepys and Hirschfield, 2003).

Mean platelet volume (MPV) describes the average size of platelets in a blood sample and routinely measured by automated hematology analyzers using either electrical

impedance or optical fluorescence method (Jackson and Carter, 1993). A rise in MPV during sepsis caused by increased platelet destruction and increased production of larger mean platelet volume and younger platelets (Warkentin et al., 2003).

Increased platelet volume and size reflects the existence of athrombotic and inflammatory milieu; thus, MPV is suggested as a possible marker of platelet function and activation (Colkesen et al., 2012).

Additionally, MPV has been considered an index for inflammation. disease activity, and efficacy of inflammatory treatment in several chronic inflammatory disorders, such as inflammatory bowel disease, rheumatoid arthritis, and ankylosing spondyloarthritis (Yazici et al., 2010).

The time course of platelet counts and its function in critically ill patients, especially in patients with sepsis, have been elucidated by several previous studies (Akca et al., 2002).

There is a strong relation between MPV and prognosis described by medical researchers, so an increase in platelet size in a patient with bacterial infection could suggest that the infection has become invasive (*Jones et al.*, 2009).

AIM OF THE WORK

This study aims to correlate between the mean platelet volume in patients with sepsis with C-reactive protein as a prognostic markers.

Chapter 1

SEPSIS

Sepsis definitions

epsis as a process of rotting flesh, and recently, it has been defined as life-threatening organ dysfunction resulting from infection (*Reinhart et al.*, 2017).

Despite best efforts at protocol-based care pathways, mortality from septic shock remains high at nearly 35% to 40% (*Vincent et al.*, 2019).

Sepsis was first mentioned in Homer's poems around 2,700 years ago. The word "sepsis" comes from the word σῆψις, (sipsi), which in original Greek means decomposition of organic matter. During the late 19th and the 20th centuries, sepsis was described as a systemic infection supposedly caused by the invasion of the blood stream by pathogenic microorganisms. However, patients still died of sepsis even when the microorganisms had been eradicated with antibiotics (*Majno*, 1991).

Sepsis-1: Systemic Inflammatory Response Syndrome Criteria

The term "sepsis" had been used broadly for decades; however, it had been associated with multiple definitions, and the term had been loosely applied to many syndromes. In an