سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Study of some lipoproteins in patients with Ischaemic heart disease receiving Nigella sativa seeds

Thesis

Submitted to the
Medical Research Institute
University of Alexandria
in Partial Fulfillment
of the requirements for the Degree of

Master of Chemical Pathology

By

Hadeel Ahmed Saad Wanas MBBch. (Alex.)

Medical Research Institute
Alexandria University

2004

SUPERVISORS

Prof. Dr. Ahmad Mohamad 7aki

Professor of Chemical Pathology

Medical Research Institute

University of Alexandria

Prof. Dr. Said Mahmoud Kandil

Professor of Internal Medicine

Medical Research Institute

University of Alexandria

Prof. Dr. Mona Mohamad Abaza

Professor of Chemical Pathology

Medical Research Institute

University of Alexandria

Dr. Mahmoud Saad Ragab

Assistant Prof. of Chemical Pathology

Medical Research Institute

University of Alexandria

ACKNOWLEDGEMENT

All my thanks must go first to God, without his welling this work won't come out to light.

I would like to express my deepest thanks, full gratitude and cordial appreciation to **Prof. Dr. Ahmad Mohamad Zaki**, Professor of Chemical Pathology, Medical Research Institute, University of Alexandria, for his planning, fatherly encouragement and unlimited efforts in reading and revising this thesis till the final manuscript.

I am greatly indebted to **Prof. Dr.Said Mahmoud Kandil**, Professor of Internal Medicine, Medical Research Institute, University of Alexandria, for supplying me with the material needed for this study and his noteworthy advices, particularly from the clinical point of view.

I have the pleasure to express my heart-felt gratitude to **Prof. Dr. Mona Mohamed Abaza**, Professor of Chemical Pathology, Medical Research Institute, University of Alexandria, for her continuous guidance, and scientific assessment to accomplish this work.

I am very grateful to **Dr. Mahmoud Saad Ragab**, Assistant Professor of Chemical Pathology, Medical Research Institute, University of Alexandria, for his kind assistance, close scientific supervision and continuous guidance throughout this work.

I would like to thank the sincere help of **Prof**. **Dr**. **Mohamed El-Dakhakhny**, Professor of Pharmacology, Faculty of Medicine, University of Alexandria.

A special thank is a must to **Dr**. **Hoda Ali Mohamed**, Lecturer of Chemical Pathology, Medical Research Institute, University of Alexandria, for her practical guidance.

Also I wish to Thank **Dr. Moyassar Ahmad Zaki**, Lecturer of Chemical Pathology, Medical Research Institute, University of Alexandria, for providing me with valuable scientific data.

Last but not least, I own special thanks to my husband and my family who faithfully supported me throughout this work.

CONTENTS

Chap	Page	
I.	Introduction	1
II.	Aim of the Work	27
III.	Material	28
IV.	Methods	29
V.	Results	42
VI.	Discussion	64
VII.	Summary and conclusion	71
VIII.	References	75
	Protocol	
	Arahic Summary	

List of Abbreviations

λ	:	Wavelength
ΔA/min	:	Change in absorbance per minute
A	:	Absorbance
ACAT	:	Acyl -CoA cholesterol O-acyltransferase
ALT	:	Alanine aminotransferase
Apo A-1	:	Apolipoprotein A-1
Apo B		Apolipoprotein B
Аро С	:	Apolipoprotein C
Apo E	:	Apolipoprotein E
Аро Ј	:	Apolipoprotein J
AST	:	Aspartate aminotransferase
CETP	:	Cholesteryl ester transfer protein
Cs	:	Concentration of standard
C_{T}	:	Concentration of test
ECG	:	Electro cardio grame
ELISA	:	Enzyme-linked immunosorbent assay
FSG	:	Fasting serum glucose
Hb	:	Haemoglobin
HDL	:	High density lipoprotein
ННсу	:	Hyper homocysteinemia
HMG-CoA	:	3-Hydroxy-3-methylglutaryl-CoA
H ₂ O	:	Water
H ₂ O ₂	:	Hydrogen peroxide
HRP	:	Horseradish Peroxidase
IDL	:	Intermediate density lipoprotein

IHD	:	Ischemic heart disease
γ-LpE	:	Gamma lipoprotein E
LCAT	:	Lecithin cholesterol acyltransferase
LDL	:	Low density lipoprotein
Lp(a)	:	Lipoprotein (a)
LPL		Lipoprotein lipase
MM-LDL	:	Minimal modified low density lipoprotein
NAD	:	Nicotinamide adenine dinucleotide
NADH	:	Reduced form of nicotinamide adenine dinucleotide
NIDDM	:	Non insulin dependent diabetes mellitus
Ns	:	Nigella sativa
NSO	:	Nigella sativa oil
O2	:	Oxygen
OPD	:	Ortho-phenylenediamine
PCV	:	Packed cell volume
PET buffer	:	PBS-EDTA-Tween 20
PMN	1:	Polymorpho- nuclear cell
Pre β1-LpA-1	:	Small HDL contains only apo A-1
S	:	Standard
Т	:	Test
TG	:	Triglycerides
TGFβ	:	Transforming growth factor β
TQ	:	Thymoquinone
VCAM-1	:	Vascular cell adhesion molecule-1
VLDL	:	Very low density lipoprotein

List of Tables

Table		Page
(I)	Classification and properties of major human plasma apoproteins	3
(II)	Characteristics of human plasma lipoproteins	4
(III)	Chemical composition (%) of normal human plasma lipoproteins	4
(IV)	Some properties and the composition of LDL and Lp(a)	
(V)	Demographic data among the studied patients	
(VI)	Some clinical data of the studied subjects	44
(VII)	Some biochemical data in the studied subjects	46
(VIII)	Effect of Nigella sativa intake on fasting and postprandial blood glucose levels in the studied subjects	48
(IX)	Effect of Nigella sativa intake on lipid profile in the studied subjects	51
(X)	Effect of Nigella sativa intake on risky total cholesterol level in the studied subjects	53
(XI)	Effect of Nigella sativa intake on risky HDL level in the studied subjects	54
(XII)	Effect of Nigella sativa intake on risky LDL levels in the studied subjects	56
(XIII)	Effect of Nigella sativa intake on risky TG level in the studied subjects	58
(XIV)	Effect of Nigella sativa intake on risky Lp(a)level in the studied subjects	60
(XV)	Multiple regression analysis for different clinical data in patients with risky lipid profile	63

List of Figures

Figure	·	Page
1	General structure of lipoprotein particles	2
2	Metabolic fate of chylomicrons	6
3	Metabolic fate of very low density lipoproteins and production of low density lipoprotein	8
4	Metabolism of high density lipoproteins in reverse cholesterol transport	11
5	A Schematic model of the Lp(a) molecule	13
6	Schematic representation of the typical kringle structure, plasminogen and apo(a)	22
7	Standard curve of Lp(a)	39
8	Effect of Nigella sativa intake on fasting and postprandial blood glucose levels in the studied subjects	49
9	Effect of Nigella sativa intake on risky HDL-C level in the studied subjects	55
10	Effect of Nigella sativa intake on risky TG level in the studied subjects	59
11	Effect of Nigella sativa intake on risky Lp(a)level in the studied subjects	61

Introduction

INTRODUCTION