

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Effect of Balance Training Versus Stretching Relaxation Exercise in Memory and Spatial Cognition Enhancement on Healthy Adults

Thesis

Submitted in Partial Fulfillment for the Master Degree in Audio-Vestibular Medicine

By

Ahmed Abd El-Hameed Ahmed

M.B., B, Ch, Faculty of Medicine Ain Shams University, 2014

Under supervision of

Prof. Dr. Salah Soliman

Professor of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Hisham Mohamed Taha

Professor of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University

Dr. Noha Ali Shafik

Lecturer of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Salah Soliman**, Professor of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Hisham Mohamed Taha**, Professor of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Moha Ali Shafik,** Lecturer of Audio-Vestibular Medicine Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Ahmed Abd El-Hameed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Cognitive & Executive Functions	5
Stretching Exercises (Cardiorespiratory Fitnes	s)32
Patients and Methods	43
Results	53
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Appendices	
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Executive functions (EFs) are imp just about every aspect of life	
Table (2):	Mean and SD of SOT, MMN (lamplitude), BESS, Spatial Reason and Wechsler IQ test of two study graining	ning test coups pre-
Table (3):	Mean and SD of SOT, MMN (lamplitude), BESS, Spatial Reason and Wechsler IQ test of two study post-training	ning test ly groups
Table (4):	Mean and SD of SOT, MMN (lamplitude), BESS, SR and Wechsle of study group 1 pre and post training	er IQ test
Table (5):	Mean and SD of SOT, MMN (lamplitude), BESS, Spatial Reason and Wechsler IQ test of study ground post training	ning test oup 2 pre
Table (6):	Percent of change of median a between group 1 and 2 in pre training tests	and post
Table (7):	GM Differences for the contrast of trained subjects, group analysis	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Original model of memory, consisting the sensory register, short-term store long-term store	e, and
Figure (2):	Cortical structures of brain	11
Figure (3):	Cortical and subcortical connections hippocampus	
Figure (4):	Forward connections (solid lines) areas of cerebral association neocorte the parahippocampal and periocortex, and entorhinal cortex, to hippocampus; and back projectoshed lines) via hippocampal pyramidal cells, subiculum, parahippocampal gyrus to the neocor	ex via chinal the ctions CA1 and
Figure (5):	Brain activity while forming the cog	
119410 (0)	map	
Figure (6):	Four types of fundamental spatial cel	1124
Figure (7):	Neuro –interconnection of cognitude function with vestibular system	
Figure (8):	Vestibular cortices and spatial cognit	
Figure (9):	Pathway from vestibular cortice hippocampus	
Figure (10):	Stretching technique (Ballistic)	39
	Stretching technique (Passive)	
	Stretching technique (Contract Relax	
Figure (13):	Stretching technique (Static)	42
Figure (14):	Dynamic posturogrpahy se organization test.	ensory 48
Figure (15):	Mismatch negativity test (latence amplitude)	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Dynamic Posturography (S.O.T) between group 1 & 2 before training showing improvement in after training more than group 2	& after group1
Figure (17):	MisMatch Negativity (Latency) between group 1 & 2 before training showing no difference both groups before & after training	& after between
Figure (18):	MisMatch Negativity (Amplitude) between group 1 & 2 before training showing no difference both groups before & after training	& after between
Figure (19):	BESS change between group 1 & & & after training showing improve group1 after training whi improvement occurred in group 2	ment in le no
Figure (20):	Spatial Reasoning change between 1 & 2 before & after training a improvement in group1 after more than group 2	showing training
Figure (21):	Wechsler IQ Test change between & 2 before & after training simprovement in group1 after while no improvement occurred in	showing training
Figure (22):	Experimental design and behavior electrophysiological results	

List of Abbreviations

Abb. Full term
BESS Balance Error Scoring System
BVC Boundary vector cell
COPD Chronic Obstructive Pulmonary Disease
CRF Cardiorespiratory fitness
EFs Executive functions
ERP Event-related potential
GOLD Global Initiative on Obstructive Lung Disease
HD cell Head direction cell
HPC Hippocampus
LTM Long Term Memory
MEC Medial entorhinal cortex
MMF Mismatch field
MMN Mismatch negativity
MST Medial superior temporal area
OED Oxford English Dictionary
ParaHPC Parahippocampal cortex
Parietal Ant Parietal anterior cortex
PIVC Parieto-insular vestibular cortex
PNF Proprioceptive neuromuscular facilitation
PNS Parasympathetic nervous system
RSPRetrosplenial cortex
SNS Sympathetic nervous system
SSC Stretch-shortening cycles
STM Short Term Memory

List of Abbreviations Cont...

Abb.	Full term
VIP	. Ventral intraparietal area
WAIS	. Wechsler Adult Intelligence Scale
WM	. Working memory

Introduction

Physical exercise has been shown to improve cognitive functions. However, it is still unknown which type of exercise affects cognition. In the present study, we tested the hypothesis that a demanding balance training program improves memory and spatial cognition.

Developing methods to enhance neuroplasticity and cognitive functioning has become a major research interest of psychologists in the light of quickly advancing technologies and aging societies (*Lindenberger*, 2014).

Among a large variety of behavioral interventions such as cognitive training programs and special nutrition, physical exercise programs have been suggested to improve cognition (Hötting and Röder, 2013; Erickson et al., 2015).

Physical exercise over a course of several months has been shown to improve cognitive performance, including executive functions, speed of processing and memory. Moreover, aerobic exercise has been found to slow down gray matter volume loss in the hippocampus and frontal lobes (*Kramer et al., 1999; Voelcker-Rehage et al., 2011*).

So far, most of the studies investigating the effects of physical exercise on cognitive functions have focused on aerobic training like running, walking and cycling. However, a recent meta-analysis on the effects of aerobic training on cognitive functions in older adults

concluded that there is still no clear evidence for a causal link between an increase in cardiorespiratory fitness and cognitive benefits (Young et al., 2015).

Thus, cardiorespiratory fitness improvements following aerobic training might only be one of multiple factors mediating the positive effects of exercise on cognition This hypothesis is supported by recent reports suggesting beneficial effects of other types of exercise on cognitive functions For example, randomized controlled intervention studies employing coordination training (Voelcker-Rehage et al., 2011; Moreau et al., 2015).

Moreover dancing reported positive effects on memory, selective attention, executive functions and spatial cognition compared to control groups (Kattenstroth et al., 2013).

Physical exercise, regardless of its aerobic or anaerobic metabolic demands, provides a stimulus to vestibular, neuromuscular and proprioceptive systems. The perception of self-motion and balance is coded by vestibular detection of inertial motion, in conjunction with proprioceptive and visual signals (Angelaki and Cullen, 2008).

Connections between vestibular nuclei and the cerebellum, hippocampus, as well as prefrontal and parietal cortices provide information for cognitive functions such as spatial functions, navigation and memory (Hitier et al., 2014).

It has been speculated that an increased stimulation of the vestibular system during self-motion might be an essential mediator between physical exercise and cognitive functioning (Smith et al., 2010).

However, data on the effects of balance training on cognitive functions as they are related to memory and spatial cognition are not clear, indeed, the goal of the present study is to test the hypothesis that a physical exercise program with high demands on the vestibular system could improve memory and spatial cognition.