

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy

A lipid Based Carrier for Ocular Delivery of Difluprednate

Thesis Submitted in partial fulfilment of Doctor of Philosophy Degree in Pharmaceutical Sciences

(Pharmaceutics)

By

Doaa Hamdy Mohamed Shakshak

Master Degree of Pharmaceutical Sciences, 2010, Ain Shams University

Under the supervision of

Prof. Abdelhameed Abdullah El Shamy

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

(God bless his soul)

Prof. Amany Osama Kamel

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Prof. Nahed Daoud Mortada

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Rania Aziz Ishak

Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Cairo

2021

Acknowledgement

Foremost, I would like to express my sincere gratitude to my advisor Prof. Nahed Daoud Mortada for the continuous warm support of my Ph.D. study and research, for her patience, motivation, enthusiasm, and immense knowledge. I could not have imagined having a better advisor and mentor for my Ph.D study moreover my whole practical life in the faculty she was always my role model since I was an undergraduate student up till now. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Amany kamel, for her encouragement, continuous support unconditioned help throughout the years. She was always my supporter in my hard times, her words cheered me up in my hard days...I am blessed having a cheerful supporting person like her in my life. I will be always grateful to her. My sincere thanks also go to assoc. Prof. Rania Aziz, for offering me valuable insightful comments. Her guidance helped me in all the time of research and writing of this thesis. My deep thanks and gratitude goes to her for kind support and motivation. I couldn't imagine this thesis without her.

I am blessed having prof Dr Abdelhamd Elshamy on my thesis committee. I wish he could be there at this time, always remembering his kind supporting words. god bless his soul, hoping this thesis would be sadaka garya as he always said.

I would like to thank my fellow lab mates in faculty of pharmacy Ain Shams University Reham Samir, Enas Mostafa, prof. Rania Hathout for the stimulating discussions, for the sleepless nights we were working together, and for all the times we have had in the last years.

I am grateful to all my dear PhD committee enlightening me the completeness of this thesis.

Last but not least, I would like to thank my family especially my parents for giving birth to me at the first place and supporting me spiritually throughout my life. My daughter Habiba and my beloved son Youssef for their continuous unconditioned support and love throughout the years, it is my privilege to thank my beloved sister Wallaa and dearest brother Gamal for their continuous loving support...

List of Contents

Item	Page
List of Abbreviations	iv
List of Tables	vi
List of Figures	viii
Abstract	X
General Introduction	1
Scope of Work	37
Chapter I:	

	<u> </u>
Introduction	38
Methodology	43
3.1.Determination of λmax of DFP	43
3.2. Construction of the calibration curve of DFP in PBS	43
3.3. Preparation of DFP-loaded LNCs	44
3.4. Optimization of DFP-Loaded LNCs using a statistical mixture design	45
3.5. Characterization of the prepared LNCs	46
3.5.1. Particle size and zeta potential analysis	46
3.5.2. Viscosity measurements	47
3.5.3. pH Measurements	47
3.6. Particle morphology using high resolution transmission electron microscopy (HR-TEM)	47
3.7. In vitro release of DFP from LNCs	47
3.8. Effect of aging	48
3.9. Sterilization of DFP-loaded LNCs	48
4. Data analysis	49
Results and Discussion	50
1. spectral scanning of DFP	50

2.Calibration curve of DFP in PBS (pH 7.4)	50
**	
3. DFP-loaded LNCs	51
4. Optimization of DFP-loaded LNCs	53
4.1. Model generation	55
4.2. Model diagnostics	55
4.3. Data analysis	56
4.3.1. PS model	56
4.3.2. ZP model	63
4.3.3. Viscosity model	65
4.4. Model validation	67
5. Particle morphology using High resolution-transmission electron microscopy (HR-TEM)	68
6. In vitro release of DFD from the selected LNCs	69
7. Effect of aging	72
8. Sterilisation results	74
Conclusions	75
Chapter II:	
Introduction	77

Materials and Equipment	82
Methodology	83
3.1. Preparation of highly deacetylated chitosan	83
3.2. Characterization of highly deacetylated chitosan using FT-IR spectroscopy	83
3.3. Preparation of chitosan-coated LNCs	84
3.4. Characterization of the prepared CLN	85
3.4.1. PS, polydispersity and ZP analysis	85
3.4.2. Viscosity measurements	85
3.4.3. pH Measurements	86
3.4.4. Particle morphology using HR-TEM	86
3.5. In vitro release of DFP-loaded CLN	86
3.6. In vitro mucoadhesion study	87
3.7. Sterilization of the selected DFP-loaded CLN	89
3.8. Effect of aging	89
4. Data analysis	90
Results and Discussion	91

1.Highly deacetylated chitosan	91
2. Characterization of highly deacetylated chitosan by FT-IR	91
3.DFP-loaded CLN	94
4. Characterization of the prepared DFP-loaded CLN	95
4.1. PS, PDI, and ZP	95
4.2. Viscosity measurements	99
4.3. pH Measurements	101
4.4. Particle morphology using HR-TEM	102
5. In vitro release of DFP from the selected CLN formulae	102
6. In vitro mucoadhesion measurements	110
7. Sterilization results	111
8. Aging Study	113
Conclusions	115
Summary	118
References	126

List of Abbreviations

ANOVA	Analysis of variance	
A	Area	
CLN	chitosan-coated Lipid nano capsule	
C.V.	Coefficient of variation	
CI	Confidence interval	
Conc.	Concentration	
СООН	Carboxyl group	
cP	Centipoise	
DFP	Difluprednate	
DLS	Dynamic light scattering	
Da	Dalton	
DIW	Deionized water	
Df	Degree of freedom	
FT-IR	Fourier Transform Infrared Spectrometer	
G	Gram	
g	Acceleration due to gravity	
HR-TEM	High resolution transmission electron microscopy	
H-bond	Hydrogen bond	
HLB	Hydrophilic lipophilic balance	
Kg	Kilogram	
k0	Zero order release rate constant	
k	First order release rate constant	
kH	Higuchi release rate constant	
LNC	Lipid nanocapsule	
L	Liter	
LEC	Lecithin	
Mt/M∞	cumulative drug released at time t	
mV	Milli volt	
Mw	Molecular weight	
Mg	Milligram	
Min	Minutes	

mL	Milliliter	
mm	Millimeter	
mM	Millimole	
μg	Microgram	
μl	Microliter	
-NH2	Amino group	
nm	Nanometer	
NS	Non-significant	
NPs	Nanoparticles	
°C	Degree Celsius	
-OH	Hydroxyl group	
o/w	Oil-in-water	
%	Percent	
PIT	phase inversion temperature	
PS	particle size	
P	probability	
PDI	polydispersity index	
PBS	Phosphate buffer saline	
ppm	Parts per million	
PS	Particle size	
Q_0	Initial amount of the drug in CLN	
Q_t	Cumulative amount of the drug released at time t	
Q	Cumulative remaining amount of the drug,	
\mathbf{Q}_{∞}	Total amount of the drug loaded in CLN intended to be released	
	after infinite time	
\mathbb{R}^2	Coefficient of determination	
r	Radius	
NaCl	Sodium chloride	
SD	Standard deviation	
Sec	Seconds	
T	Time	
w/o	water-in-oil	
v/v	Volume per volume	

w/v	Weight per volume
w/w	Weight per weight
WHO	Wealth and health organization
λmax	wavelength of maximum absorbance
ZP	Zeta potential

List of Tables

Table No.	Title	Page
1	A collective table summarizing the published works on the ocular delivery of lipid-based nano-sized platforms for the treatment of inflammatory diseases affecting the anterior eye segment	25
2	Overview of some examples of the successfully prepared DFP loaded carriers for ocular delivery	36
3	The Levels of the independent formulation variables for the preparation of LNCs.	46
4	Characterization of the prepared DFP-loaded LNCs.	54
5	ANOVA test results.	58
6	Statistical analysis results of the studied responses.	59

7	Experimental and predicted data of PS, ZP, and viscosity responses for the two randomly selected LNC formulations and their calculated percentage bias.	67
8	The release data of DFP from the selected Labrafac® and Captex®-based LNC in PBS at 37°C.	70
9	Changes in PS, PDI, and ZP of the prepared DFP-loaded LNC formulations after 9 months storage under refrigeration at $5\pm3^{\circ}\text{C}$.	73
10	The effect of sterilization on PS, PDI, ZP, and pH of the chosen DFP-loaded LNC formulations.	74
11	Examples for different chitosan-coated nanocarriers for ocular delivery	80
12	Compositions and codes of the prepared DFP-loaded CLN.	85
13	Physicochemical characterization in terms of PS, PDI, and ZP of the prepared DFP-loaded CLN.	98
14	The viscosity values of the selected CLN formulations.	100
15	The pH values of the selected CLN formulations.	101
16	In vitro release data of DFP from the selected Labrafac®-based CLN compared with the respective uncoated LNCs in PBS at 37°C.	105
17	In vitro release data of DFP from the selected Captex® 8000-based CLN compared with the respective uncoated LNCs in PBS at 37°C.	106