

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A Numerical Model for Simulating Deep Injection Wells

A Thesis
Submitted to Faculty of Engineering
Ain Shams University in Fulfillment of the Requirement for M.Sc. Degree in
Civil Engineering
(Irrigation and Hydraulics Engineering)

Prepared by

Norhan Shaaban Abd El-Atty Khalifa El-Sharkawy

B.Sc. in Civil Engineering, June 2014 Faculty of Engineering, Ain Shams University

Supervised by

Prof. Dr. Iman Mahmoud El Azizy

Professor of Hydraulics & Water Resources Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Prof. Dr. Mohamed Abd El-Hamid Gad

Professor of Engineering Hydrology Faculty of Engineering, Ain Shams University, Cairo, Egypt.

A Numerical Model for Simulating Deep Injection Wells

A Thesis
Submitted to Faculty of Engineering
Ain Shams University in Fulfillment of the Requirement for M. Sc. Degree in
Civil Engineering
(Irrigation and Hydraulics Engineering)

Prepared by Norhan Shaaban Abd El-Atty Khalifa El-Sharkawy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Khaled Ismail Hamza Professor of Hydraulics & Water Resources Faculty of Engineering, El-Fayoum University	· · · · · · · · · · · · · · · · · · ·
Prof. Dr. Abd El-kawi Ahmed Mokhtar	
Khalifa	
Professor of Hydraulics & Water Resources	•••••
Faculty of Engineering, Ain Shams University	
Prof. Dr. Iman Mahmoud El Aziziy	
Professor of Hydraulics & Water Resources	••••••
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed Abd El-Hamid Gad	
Professor of Engineering Hydrology	•••••
Faculty of Engineering, Ain Shams University	
	Date: 27/9/ 2021

Statement

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M. Sc. in Civil Engineering.

The work done in this thesis was carried out by the author in the Department of Irrigation and Hydraulics, Faculty of Engineering, Ain Shams University.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate certifies that the work submitted is his own and that proper credit has been given where other people's work has been referenced.

Date: 27 / 9 / 2021

Signature: Norhan Shaaban

Name: Norhan Shaaban Abd El-Atty Khalifa

El-Sharkawy

Researcher Data

Norhan Shaaban Abd El-Atty Khalifa El-

Name: Sharkawy

Date of Birth: 20th August 1992

Place of Birth: Cairo, Egypt

Last Academic Degree: Bachelor of Science in Civil Engineering

Field of Specialization: Civil Engineering

University Issued the Degree: Ain Shams University

Date of Issued Degree: June 2014

Demonstrator, Irrigation and Hydraulics

Current Job: Dept., Faculty of Engineering, Ain Shams

University

Acknowledgment

Thanks to Allah for giving me such opportunity and experience, who is always beside me in every little detail in my life. I would like to thank Prof. Dr. Iman El Azizy for her kind encouragement, support and supervision. Then I would like to extend my deepest appreciation for being under the supervision of Prof. Dr. Mohamed Gad. I cannot find the words to thank him for his sincere help and support. Without the guidance and continuous help of my two supervisors, this thesis would not have been possible.

Finally, I have to mention the important role of my lovely friends and family members especially my father and my husband for their unlimited support and kindness.

ABSTRACT

The growing tourism investments and urban developments at the coastal regions increased the demand on desalinated seawater, especially in the light of fresh water shortage. For the majority of Arab countries, water desalination became a necessary sector. The number and capacity of desalination units have expanded considerably in the previous decades, particularly in the Gulf States. One of the main stages of desalination is selecting a proper method to dispose undesired brine, which is a byproduct from the plant, in a safe and economic manner to ensure the success and continuity of the desalination process. One of the widely used methods of desalination brine disposal nowadays is using deep injection wells. The construction cost of these wells is relatively high. So the decision of using this method and its success in disposing the entire capacity of brine from desalination plants must be precisely studied prior to well construction in the early planning stages to assess the feasibility of injection.

This thesis investigates the problem of pressurized injection of desalination brine into deep aquifers by conducting a numerical modeling approach using SEEP/W software in order to simulate the pressure-discharge relationship in the injection well. The model is then validated using observed data from in-situ injection test that was conducted in a coastal area at Zafarana region near the western coast of the Gulf of Suez in Egypt.

The results showed that the model could fairly explain the pressuredischarge relation into the injection well. The validated model was also used to determine the effects of well design parameters on the desalination brine injection capacity. These parameters are the pressure of injection, soil hydraulic conductivity, aquifer thickness, screen length, and well di-

ameter. Our initial assessment of the modeling approach indicates that the

developed approach constitutes a valuable tool for the planning and as-

sessment of deep injection wells, this is important to assess and determine

the injection feasibility early prior to well construction.

Finally, the thesis developed multiple design charts that can help en-

gineers in determining the brine injection capacity of wells. The injection

capacity is represented in terms of the well design parameters. The study

also introduced a non-linear regression model (power equation) that can be

used as an alternative to the design charts.

KEYWORDS: Deep; Injection; Wells; Modeling; Desalination; Brine

II

Table of Contents

ABSTR	ACTI
LIST O	F FIGURESVII
LIST O	F TABLESX
LIST O	F ABBREVIATIONSXI
СНАРТ	ER 1 INTRODUCTION1
1.1 Bac	ckground1
1.2 Pro	oblem Definition3
1.3 Stu	dy Objective4
1.4 Me	thodology4
1.5 The	esis Organization5
СНАРТ	TER 2 LITERATURE REVIEW7
2.1 Wa	ter Scarcity7
2.1.1	
2.1.2	Water scarcity in Egypt8
2.2 Des	salination Development9
2.2.1	
	Desalination in Egypt
2.3 Des	salination Brine13
2.4 Rev	view on the Available Methods for Desalination Brine Disposal
•••••	13
2.4.1	Surface water discharge
2.4.2	Evaporation ponds

2.4.3	Disposal into nearby sewage	16
2.4.4	Land application (spray irrigation)	16
2.4.5	Deep-injection wells	16
2.5 Sel	ecting the Proper Brine Disposal Method	17
2.6 His	torical Background on Injection Wells	20
2.7 Inj	ection Well Definition	22
2.8 Cla	ssification of Injection Wells	23
2.8.1	Class I	
2.8.2	Class II	24
2.8.3	Class III	24
2.8.4	Class IV	25
2.8.5	Class V	25
2.8.6	Class V I	26
2.9 Int	roduction to Injection Wells for Desalination Brine Dispo	
2.9.1	Well characteristics.	
2.9.2	Injection site suitability	
2.9.3	Potential drawbacks during brine injection	
2.9.4	Brine injection costs	
2.10 Tvi	pes of Brine Injection Wells	31
2.10.1	·	
2.10.2	•	
2.10.3		
2.11 Im	portance of Injection Wells in Handling and Disposing of	
_	astes	33
2.11.1	Fluid wastes storage for reuse	33
2.11.2	Injection wells in the treatment program	34
2.11.3	Injection wells for engineering activities	35
2.11.4		
2.11.5		
2.11.6	Hazardous wastes disposal	36

2.11.7	Toxic wastes disposal	37
2.12 Mo	deling of Deep-Injection Wells	37
2.12.1		
2.12.2		
2.12.3	-	
2.12.4		
СНАРТ	ER 3 TESTING THE NUMERICAL MODELING	
APPRO	ACH	40
3.1 Gei	neral Remarks	40
3.2 The	e Numerical Model	40
3.2.1	Geo-Studio	41
3.2.2	SEEP/W	41
3.2.3	SEEP/W theoretical basis	43
3.2.4	Required input for SEEP/W model	44
3.3 Illu	strative Case	47
3.3.1	Model domain and geometry	47
3.3.2	Injection zone description:	48
3.3.3	Finite element grid (mesh properties)	48
3.3.4	Material properties	
3.3.5	Boundary conditions	52
3.3.6	Solution and post-processing	53
СНАРТ	ER 4 CASE STUDY AND MODEL VALIDATION	56
4.1 Des	scription of Case Study	56
4.2 Dat	a Collection	57
4.3 Des	sign Parameters of the Injection Well	57
4.4 Inj	ection Zone Properties	58
4.5 Bas	se Model Construction	58
4.5.1	Schematic cross-section of the injection test	59

4.5.2	Aquifer properties at the injection test	59
4.5.3	SEEP/W model	60
4.6 Mo	odel Validation	63
4.7 Eff	ects of Well Design Parameters on Injection Capacit	ies66
4.7.1	Well diameter (Dia.)	66
4.7.2	Screen length (S)	69
4.7.3		
4.7.4	Well depth	
	TER 5 DEVELOPMENT OF INJECTION DESIGN	
•••••		75
5.1 Des	sign Charts	75
5.2 No	n-linear Regression of the Injection Capacity	87
СНАРТ	TER 6 CONCLUSIONS AND RECOMMENDATION	NS91
6.1 Co	nclusions	91
6.1.1	Effects of the injection parameters	92
6.1.2	Design charts and equations	93
6.2 Rec	commendation for Further Research	95
	ENCES	96

LIST OF FIGURES

Figure 2.1. Physical and economic surface water scarcity all over the	
world (ESCAP, 2014)	8
Figure 2.2. Water resources in Egypt (BCM)(Ministry of Water	
Resources and Irrigation, MWRI) (Abd Ellah, 2020).	9
Figure 2.3. The annual growth rate of the desalinated water production	in
the GCC countries (Marar, 2004)	11
Figure 2.4. Desalinated water capacity in Egypt (Allam et al., 2003)	12
Figure 2.5. A typical injection well with concentric layers (Ladewig &	
Asquith, 2011).	22
Figure 2.6. Classes of injection wells (Folger & Tiemann, 2015)	26
Figure 2.7. Design parameters of a typical injection well	27
Figure 2.8. Fractured confining strata (Wang & Pereira, 1979)	29
Figure 2.9. Shallow injection well for brine disposal (Maliva et al., 201	1)
	32
Figure 3.1. Defined boundary conditions in SEEP/W	46
Figure 3.2. The geometry used in the example	47
Figure 3.3. Specified mesh in numerical analysis example in SEEP/W	49
Figure 3.4. Snapshot of the mesh properties dialog	49
Figure 3.5. Hydraulic conductivity function	51
Figure 3.6. Volumetric water content function.	52
Figure 3.7. Assigned boundary conditions for the illustrative example	53
Figure 3.8. Flow paths and flux section in steady state analysis (2 bars	
injection pressure)	54
Figure 3.9. Total Head in steady-state analysis (2 bars injection pressure	e)
	54
Figure 4.1. Location of the study area	56
Figure 4.2. Design parameters of a typical injection well	58