

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Department of Structural Engineering

Investigation of the Behavior of Reinforced Concrete Beam-Column Joints

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

CIVIL ENGINEERING (STRUCTURES)
By

EHAB HEDIB RAMADAN ABD RABO HEDIB

Supervisors

Prof. AYMAN H. HOSNY KHALIL

Professor of R.C. Structures, Faculty of Engineering, Ain Shams University

Prof. AMR H. ZAHER

Professor of R.C. Structures, Faculty of Engineering, Ain Shams University

DR. EZZ EL-DEEN M. SALAH DR. MAHMOUD R. LASHEEN

Assistant Professor, Faculty of Engineering, Structural Engineering Department, Ain Shams University Housin

ng, Assistant Professor,
Concrete Structural Department,
Housing & Building National Research Center

Cairo-2021

STATEMENT

This thesis is submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Civil Engineering (Structures).

The author carried out the work at the faculty of engineering

reinforced concrete laboratory, Ain Shams University. No part of this

thesis was submitted for a degree or a qualification at any other university

or institution.

Date: / / 2021

Name: Ehab Hedib Ramadan

Signature:

i

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

APPROVAL SHEET

Thesis: Degree of Doctor of Philosophy in Civil Engineering (Structural)

Student Name: Ehab Hedib Ramadan Abd Rabo

Thesis Title: Investigation of The Behavior of Reinforced

Concrete Beam Column Joints

Examiners Committee:

Signature

N. Fauad

Prof. Dr. Nabil Ahmed Fouad

Professor of R.C. Structures

Faculty of Engineering, Hannover University, Germany

Prof. Dr. Mohamed Elsaid Issa

Professor of R.C. Structures Faculty of Engineering, Cairo University, Cairo, Egypt

Prof. Dr. Ayman H. Hosny Khalil

Professor of R.C. Structures Faculty of Engineering, Ain Shams University, Cairo, Egypt

Prof. Dr. Amr H. Zaher

Professor of R.C. Structures Faculty of Engineering, Ain Shams University, Cairo, Egypt

Date / / 2021

INFORMATION ABOUT THE RESEARCHER

Name: Ehab Hedib Ramadan

Date of birth: 28/3/1982

Place of birth: Bny Sweif

Academic degree:

- Master's Degree in Civil Engineering (structural) Ain Shams
University, Faculty of Engineering, Department of Structural
Engineering.

- B.Sc. Degree in Building and Construction Engineering High
Institute of Engineering, 6 October City.

Grade: Excellent with honor degree

Current Job: Teaching Assistant in High Institute of Engineering 6 October City

Signature:

ACKNOWLEDGMENTS

First of all, I thank ALLAH, who guided and helped me finish this work properly.

I wish to express my sincere gratitude to my research supervisor, Prof Dr. Ayman H. Hosny Khalil, and Prof Dr. Amr H. ZAHER, for their valuable advice, comments, and efforts to review the manuscript.

I also wish to record my special appreciation and gratitude to Dr. Ezz El-Deen Mostafa Salah for his valuable guidance, helpful suggestion, and continuous support during the research program.

The support of my father, my mother, my wife, and all my family cannot be praised enough; to them, this thesis is dedicated.

The effort of the reinforced concrete laboratory technicians, Faculty of Engineering, Ain Shams University is also appreciated.

Finally, I would like to thank my friends and colleagues who helped me complete this work.

ABSTRACT of Ph.D. THESIS

Thesis Title: INVESTIGATION OF THE BEHAVIOR OF
REINFORCED CONCRETE BEAM COLUMN JOINTS

Submitted By: Ehab Hedib Ramadan

Supervisors: Prof. Dr. Ayman H. Hosny Khalil

Prof. Dr. Amr H. Zaher

Dr. Ezz El-Deen Mostafa Salah

Dr. Mahmoud R. Lasheen

ABSTRACT

The beam-column joint is a very critical part of reinforced concrete framed structures. Joints ensure continuity of a structure and transfer forces that are present at the ends of the members. In reinforced concrete structures, failure in a beam often occurs at the beam-column joint, making the joint one of the most critical sections of the structure system.

The joint behavior was dependent on several factors related to their geometry, amount and detailing of reinforcement, relative stiffness between beam and column, concrete strength, loading pattern, and the column acting axial load. This study aimed to understand better reinforced concrete beam-column joints' behavior under the effect of three different factors: column shape, transverse beam position, and transverse reinforcement of joints.

An experimental program consists of testing three full-scale beam-column Joints with different eccentric-beam column connections with the same reinforcement were cast to study the effect of beam transverse position. Also consist of four full-scale beam-column Joints, with the same column moment of inertia to study the effect of Column shape. Another three full-scale beam-column Joints were cast to study the effect of transverse reinforcement of joint. All Joints were cast from normal strength concrete grad 35 Mpa and tested under same test setup conditions under fixed load at the column to and quasi-Static load (Cyclic load) at beam end. Parameters such as ultimate load, displacement, steel strain, energy dissipation capacity, stiffness degradation, and crack behavior of concrete were examined.

An analytical study using a non-linear finite element analysis software program (ANSYS) was conducted. The ultimate specimen capacity and load-displacement behavior of tested specimens were predicted and compared to the measured values of the experimental.

The results show that the concentric beam position is the best transverse position for the beam in the joint, also is better in the displacement, energy dissipation capacity, stiffness degradation, and strength decay. The results show that all joints exhibited the same failure mode at interaction face between beam and column for column shape effect. Rectangular column (with the same width of a beam) and squared column shape were higher than the regular rectangular and circular columns in loading capacity, displacement, stiffness degradation, and strength decay. For transverse reinforcement of joint, the results showed that increase transverse reinforcement in joint cause increasing cumulative energy dissipation, stiffness degradation rate, and strength decay rate for reinforced beam-column Joint.

Keywords: Column, Joints, RC structures,

TABLE OF CONTENTS

STATEMENTi
INFORMATION ABOUT THE RESEARCHERiii
ACKNOWLEDGMENTSiv
TABLE OF CONTENTSviii
LIST OF SYMBOLSxiii
LIST OF TABLESxv
LIST OF FIGURESxvi
CHAPTER 1
INTRODUCTION
1.1 GENERAL
1. 2 PROBLEM STATEMENT:
1. 3 RESEARCH OBJECTIVE:
1.4 SCOPE OF WORK:4
1.5 LAYOUT OF THE THESIS:5
CHAPTER 2
2.1 INTRODUCTION
2.2 Classification of Beam-Column Joints
2.2.1 Classification based on loading conditions for the Joint
2.2.2 Classification based on geometric configuration:
2.2.3 Classification based on transverse reinforcement:
2.2.4 Classification based on structural behavior:
2.2.5 Classification based on detailing aspects:
2.3 Forces Acting on a Beam-Column Joint:
2.4 Forces in Joint Core

2.5 Shear Requirements of Joint	14
2.5.1 Shear Force in Interior Joint	
2.5.2 Shear Force in Exterior Joints	
2.6 Forces Transfer Mechanisms in Beam-Column Joints	
2.7 Joint Failure	22
2.8 Factors Affecting the Joint Behavior	25
2.8.1 Concrete Strength	25
2.8.2 Column Strength at Beam-Column Joint	28
2.8.3 Reinforcement	33
2.8.4 Type of Anchorage	35
2.8.5 Axial Compression Load on Columns	38
2.8.6 Horizontal Links	39
2.8.7 Inclined Bars	41
2.8.8 Joint aspect ratio	43
2.8.9 Beamwidth ratio:	44
2.9 Summery	45
CHAPTER 3	47
3.1 INTRODUCTION	47
3.2 SPECIMEN DESCRIPTION	48
3.3 FABRICATION OF TEST SPECIMENS	57
3.4 MATERIAL PROPERTIES	61
3.4.1 CONCRETE	61
3.4.2 STEEL	62
3.5 INSTRUMENTATION	63
3.5.1 DEFLECTION MEASUREMENTS	64
3.5.3 STEEL STRAIN MEASUREMENTS	65
3.6 TEST SET-UP	66

CHAPTER 4	69
4.1 INTRODUCTION	69
4.2 TEST RESULTS	71
4.2.1 CRACK PATTERNS	74
4.2.2 LOAD-DISPLACEMENT CURVES:	87
4.2.3 LOAD-DISPLACEMENT CURVES (ENVELOPE):	90
4.2.2.1 Joint J1:	91
4.2.2.2 Joint J5:	93
4.2.2.3 Joint J6:	95
4.2.2.4 Joint J9:	97
4.2.2.5 Joint J2:	99
4.2.2.6 Joint J3:	101
4.2.2.7 Joint J4:	103
4.2.2.8 Joint J7:	105
4.2.2.9 Joint J8:	107
4.2.4 REINFORCEMENT STEEL STRAIN CURVES	109
4.2.5 MOMENT-CURVATURE HYSTERETIC	140
4.2.6 ENERGY DISSIPATION	149
4.2.7 STIFFNESS DEGRADATION	166
4.2.8 STRENGTH DECAY	167
CHAPTER 5	180
5.1 INTRODUCTION	
5.2 ANALYSIS OF TEST RESULTS	
5.2.1 STRENGTH DECAY	
5.2.2 STIFFNESS DEGRADATION	
5.2.3 DUCTILITY	183

5.2.4 ENERGY DISSIPATION183
5.3 PARAMETRIC STUDY185
5.3.1 EFFECT OF JOINT STIRRUPS (Transverse Reinforcement) 185
5.3.1.1 Cracks patterns and failure mode
5.3.1.2 Failure mode and load-displacement curves:
5.3.1.3 ENERGY DISSIPATION191
5.3.1.4 STIFFNESS DEGRADATION
5.3.1.5 STRENGTH DECAY
5.3.2 EFFECT OF COLUMN SHAPE
5.3.2.1 Cracks patterns and failure mode:
5.3.2.2 Failure mode and load-displacement curves
5.3.2.3 ENERGY DISSIPATION201
5.3.2.4 STIFFNESS DEGRADATION
5.3.2.5 STRENGTH DECAY
5.3.3 EFFECT OF BEAM TRANSVERSE POSITION (Beam
Eccentricity):
5.3.3.1 Cracks patterns and failure mode
5.3.3.2 Failure mode and load-displacement curves:
5.3.3.3 ENERGY DISSIPATION210
5.3.3.4 STIFFNESS DEGRADATION
5.3.3.5 STRENGTH DECAY212
CHAPTER 6
NUMERICAL MODELLING
6.1 INTRODUCTION
6.2 ANSYS FINITE ELEMENT MODEL
6.2.1 Material Properties