

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Design, synthesis and biological evaluation of some novel benzenesulfonamide derivatives as potential carbonic anhydrase inhibitors

Thesis Presented by

Assem Hossam Hussein Eldeeb

BSc. In Pharmaceutical Sciences (May 2017)
Instructor of Pharmaceutical Chemistry
Faculty of Pharmacy, Ainshams university

Submitted in partial fulfillment of the

Master's Degree

In Pharmaceutical sciences

(Pharmaceutical Chemistry)

Under the supervision of

Dr. Deena Samy Lasheen

Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Dr. Eman Zaglol Elrazaz

Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Dr. Mahmoud Farid Abo-Ashour

Lecturer of Pharmaceutical Chemistry
Faculty of Pharmacy, Egyptian Russian University

Faculty of Pharmacy Ain Shams University

Acknowledgment

First of all, I'm so grateful and totally thankful to ALLAH for giving me the strength and patience to complete this work.

I'm particularly grateful to **Dr. Deena Samy Lasheen** Associate Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University; for her supervision, valuable advices, continuous encouragement and untiring help. I am really sincerely and profoundly indebted to her for her priceless guidance and endless support throughout the whole work and during writing this thesis.

I would like also to express my sincere thanks to **Dr. Eman Zaglol Elrazaz**, Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, for his kindness, indispensible assistance, valuable guidance and constant support throughout the practical work.

I would like to express my deepest thanks and gratitude to **Dr. Mahmoud Farid Abo-Ashour**, Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, for direction of the research project, for his kind advices, useful discussion, constructive criticism, reviewing the thesis and encouragement throughout this work. I am really sincerely and profoundly indebted to his priceless guidance and endless support throughout the whole work and during writing this thesis.

I'm particularly grateful to **Prof. Dr. Hatem Abdel-Kader Abdel-Aziz**, professor of Applied Organic Chemistry, National Research Center for his valuable advices, fruitful opinion, precious suggestions, continuous encouragement, tremendous support, endless motivation, friendly atmosphere and untiring help. I am really sincerely and profoundly indebted to him for his priceless guidance and endless support throughout the whole work.

I'm really thankful for **Prof. Dr. Claudiu T. Supuran**, **Paola Gratteri**, **Alessio Nocentini**, **Andrea Angelia** and **Alessandro Bonardi** who have helped me doing enzyme assay of carbonic anhydrase and molecular docking study. They are such great, helpful and supportive scientists.

I must thank my upper guide, godfather and the kind manager **Prof. Dr. Mohamed Ihab Fetouh,** the dean of Faculty of Pharmacy, Egyptian Russian University for his kindness, wonderful personality and providing a warm working atmosphere and help whenever needed.

I wish to express my great thanks and appreciation to all members of the Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, in particular **Mohamed Essam** and **Amr A. Mattar** for their friendly cooperation and encouragement throughout this work.

Finally, I would like to express my gratitude to all my family members especially to my mother, father, brothers and lovely fiancée **Mariam** for their support to complete this work.

This work was published in European Journal of Medicinal Chemistry; 2021 Jun;

221, 113486

European Journal of Medicinal Chemistry 221 (2021) 113486

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies

Assem H. Eldeeb a, Mahmoud F. Abo-Ashour a.*, Andrea Angeli b, Alessandro Bonardi b.c, Deena S. Lasheen d, Eman Z. Elrazaz d, Alessio Nocentini b, c, Paola Gratteri c, Hatem A. Abdel-Aziz e, Claudiu T. Supuran b,

- ^a Department of Pharmacoutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
 ^b Department of NEUROFARBA, Section of Pharmacoutical and Nutracoutical Sciences, University of Horence, Polo Scientifica, Via U. Schiff 6, 50019, Sesto Fiorentino, Hrenze, Italy
- C Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Florentino, Firenze, Italy
- ent of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt

ARTICLE INFO

Article history: Received 15 March 2021 Received in revised form 13 April 2021 Accepted 15 April 2021 Available online 27 April 2021

Keywords: Benzenesulfon amides Tail approaches Dual tail approaches Carbonic anhydrase inhibitors Synthesis Molecular docking

ABSTRACT

New series of benzenesulfonamide and benzoic acid derivatives were designed and synthesized using tail/dual tail approach to improve potency and selectivity as carbonic anhydrase inhibitors. The synthesized compounds evaluated as CAIs against isoforms hCA I, II, IV and IX with acetazolamide (AAZ) as standard inhibitor. The benzenesulfonamide derivatives 7a-d, 8a-h, 12a-c, 13a and 15a-c showed moderate to potent inhibitory activity with selectivity toward isoform hCA II, especially, compound 13a with $(K_i = 7.6 \text{ nM})$, while the benzoic acid analogues 12d-f, 13b and 15d-f didn't show any activity except compounds 12d,f and 15e that showed weak activity. Additionally, molecular docking was performed for compounds 7a, 8a, 8e, 12a, 13a and 15a on isoform hCA I, II to illustrate the possible interaction with the active site to justify the inhibitory activity.

© 2021 Elsevier Masson SAS, All rights reserved.

1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are pervasive metalloenzymes present in prokaryotes and eukaryotes [1], 16 α-CA isozymes were identified in mammals with various catalytic activity and subcellular localization [2]. Up till now, 15 different isoenzymes of hCAs have been detected. Among these, 12 isoenzymes are catalytically active with different cellular localizations (I-III,VII, and XIII are cytosolic: IV. IX. XII. and XIV are membrane-bounded: VA and VB are mitochondrial: and VI is secreted in milk and saliva). while the CARPs VIII, X, and XI are catalytically inactive [3,4]. The

- · Corresponding author
- ** Corresponding author.

 E-mail addresses: Mahmoud Farid2020@gmail.com (M.F. Abo-Ashour), claudiu.

 supuran@unifi.it (CT. Supuran).

https://doi.org/10.1016/j.ejmech.2021.113486 0223-5234/0-2021 Elsevier Masson SAS, All rights reserved.

Zn2+ active site is essential for acid-base homeostasis- by enzymatically catalyzing the conversion of carbon dioxide to carbonic acid [5,6]. Human CAs are involved in a vast range of physiopathological processes, including electrolytes secretion, pH and CO₂ homeostasis, biosynthetic reactions, bone resoration and oncogenesis, as a result, carbonic anhydrase suppressors are used for management of glaucoma, edema, epilepsy, obesity and tumors [7-14].

Sulphanilamide is one of the most classical classes acting as CAIs [15,16]. During last few years, many approaches was adopted to synthetize potent and selective carbonic anhydrase inhibitors as tail/dual tail approaches[16-18]. In tail approach, sulphanilamide was conjugated with different moieties to increase the interaction with hydrophobic or hydrophilic parts of the active site[19,20]. Compounds I-V (Fig. 1) were designed as CAIs depending on the last approach[21-24]. While dual tail approach depended on

Department of Applied Organic Chemistry, National Research Center, Doklé, Cairo, 12622, Egypt

Besides the work presented in this thesis, the candidate successfully passed general and special postgraduate courses in Pharmaceutical Chemistry for one year during academic year <u>2018/2019</u> with the general grade: **Excellent (GPA 3.86)**

the following grades:

1) Biostatistics	Excellent
2) Instrumental Analysis	Excellent
3) Bioinformatics	Excellent
4) Scientific Writing & Research Ethics	Very Good
5) Pharmaceutical Chemistry	Very Good
6) Structural Elucidation of Chemical Entities	Excellent
7) Comprehensive Organic Chemistry	Excellent
8) Stereochemistry	Excellent
9) Methods of Drug Screening	Excellent

10) Computer Aided Drug Design

Excellent

List of Contents:

List of Abbreviations	VIII
List of Figures	IX
List of Tables	X
Abstract	XI
1. Introduction	1
1.1. Carbonic Anhydrase overview	1
1.2. Different types of α-CA isozymes	1
1.3. Catalytic Mechanism	4
1.4. Structure of Human α-CAs.	5
1.5. Carbonic Anhydrase as drug target	9
1.6. Different Mechanisms of action for CA inhibitors	16
1.7. Different classes of action for CA inhibitors	16
1.8. Classical carbonic anhydrase inhibitors	16
1.9. Non classical CAIs	17
1.10. Different approaches for development of sulfonamide based carbonic anhydrase inhibitors	24
1.11. Chemical classification of sulfonamide as CAIs based on their tail moiety	28
2. Rationale & Design:	38
2.1. Synthetic schemes for synthesis of the designed compounds	44
2.1.1. Scheme 1	44
2.1.2. Scheme 2	45
2.1.3. Scheme 3	45
2.1.4. Scheme 4	46
2.1.5. Scheme 5	46

3. Results & Discussion:	47
3.1. Chemistry	47
3.1.1. Scheme 1	47
3.1.2. Scheme 2	48
3.1.3. Scheme 3	50
3.1.4. Scheme 4	51
3.1.5. Scheme 5	52
3.2. Biological Evaluation	54
3.3. Molecular docking study	62
4. Conclusion:	66
5. Experimental:	67
5.1. Chemistry	67
5.1.1. Materials and instrumentation	67
5.1.2. Synthesis	68
5.2. Biological Evaluation	85
5.3. Molecular docking study	87
6. Refrences:	88
7. Supplementary data:	107
8. Arabic summary:	138

List of abbreviations:

AAZ Acetazolamide

ACC Acetyl-coa carboxylase

CSF Cerebrospinal fluid

BT Bicarbonate transporters

CA Carbonic anhydrase

hCA Human carbonic anhydrase

CAIs Carbonic anhydrase inhibitors

GLUT Glucose transporter

ECD Extracellular domain

HIF Hypoxia inducible factor

IC Intracellular

IOP Intraocular pressure

PC Pyruvate carboxylase

PG Proteoglycan

RCC Human renal cell carcinoma

TM Transmembrane region

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

NHE NA+/H+ exchanger

MCT Monocarboxylate transporter

ZBG Zinc-binding group

CARP Carbonic anhydrase related protein

DMF-DMA Dimethylformamide dimethylacetal

Ki Inhibition constant

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DMSO Dimethyl sulfoxide

PABA Para amino benzoic acid

IC50 50% Inhibitory concentration

List of Figures:

Figure 1. Mechanism for CA catalyzed CO ₂ hydration	4
Figure 2. The structure of human CAII	5
Figure 3. The active site of hCA II	6
Figure 4. The structure of human CAIV (A) and CAIX (B)	8
Figure 5. Hypoxia-induced CA IX and their role in hypoxic tumor	15
Figure 6. Tetrahedral geometry and CA inhibition mechanism with zinc binders	17
Figure 7. Mechanism of phenols acted as CAIs	18
Figure 8. Out of the active site binding (carboxylates)	20
Figure 9. Proposed inhibition mechanism of CAs by coumarins/thiocoumarins	21
Figure 10. Compounds which inhibit the CAs by occluding the entrance to the active	22
site	
Figure 11. Tail Approach for development of selective CAIs	25
Figure 12. Design of dual-tailed sulfonamides targeting hCAs	26
Figure 13. "three-tails" approach for the design of zinc-binding CAIs	27
Figure 14. Structures of some benzenesulfonamides as potent and selective CAIs	39
Figure 15. Binding hypothesis of compounds 58 (red) and 59 (pink) with Hcaii	41
Figure 16. SAR and binding mode of compound 58 with hCAII	41
Figure 17. The design of the final targeted compounds Va-h, IXa-d, XIIIa-f, XIVa, b and XVIa-f	43
Figure 18. Predicted binding mode of derivatives IXa (cyan), Va (orange), Ve (green) within A)	64
hCA I and B) hCA II active sites, and of C) XIIIa (dodger blue), XIVa (spring green), XVIa	
(purple) within hCA II active site	

List of Tables

Table 1. Different mammals α -CA isozymes and their function	1
Table 2. Inhibitory data of human CA isoforms hCA I, hCA II, hCA IV, hCA IX with the	54
synthesized compounds IXa-d, Va-h, XIIIa-f, XIVa,b and XVIa-f determined by stopped-flow	
CO_2 hydrase assay, using the standard inhibitor acetazolamide (AAZ)	
Table 3 . Selectivity ratios for the inhibition of hCA II over hCA I, IV and hCA IX for the synthetized benzensulfonamide compounds IXa-d , Va-h , XIIIa-c , XIVa , XVIa-c and AAZ	59
Table 4. Anti-proliferative impact of sulfonamides IXa-d, Va-h, XIIIa-c, XIVa, XVIa-c against	61
breast cancer (MCF-7) cell line, and human normal breast epithelia (MCF-10A) cell line	

Abstract

Title of thesis

"Design, synthesis and biological evaluation of some novel benzenesulfonamide derivatives as potential carbonic anhydrase inhibitors"

Name of candidate

Assem Hossam Hussein Eldeeb

BSc. In Pharmaceutical Sciences (May 2017)
Instructor of Pharmaceutical Chemistry
Faculty of Pharmacy, Egyptian Russian University

Thesis supervised by:

Dr. Deena Samy Lasheen

Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Dr. Eman Zaglol Elrazaz

Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Dr. Mahmoud Farid Abo-Ashour

Lecturer of Pharmaceutical Chemistry Faculty of Pharmacy, Egyptian Russian University