

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Engineering Mechatronics Department

Local Path planning for an Autonomous Vehicle in a Non-Deterministic Environment

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Mechanical Engineering (Mechatronics Engineering)

By

Kyrelloss Nashaat

Bachelor of Science In Mechanical Engineering

(Mechatronics Engineering)

Faculty of Engineering, Ain Shams University, 2013

Supervised by

Prof. Sherif Ali Hammd

Dr. Mohamed Ahmed Abdelaziz

Dr. Maged Mohamed Motwaly Ghoneima

Cairo - (2021)

Ain Shams University Faculty of Engineering Mechatronics Department

Local Path planning for an Autonomous Vehicle in a Non-Deterministic Environment

By

Kyrelloss Nashaat

B.Sc. in Mechanical Engineering (Mechatronics)

Faculty of Engineering, Ain Shams University, 2013

EXAMINERS COMMITTEE

NAME	Signature
Professor Gamal Mohamed Ali	
Professor Yehia Hindawy Hossam Eldin	
Professor Sherif Ali Hammad	

Date: / / 2021

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Mechanical Engineering (Mechatronics Engineering), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Applio	cant	N	ame

Kyrelloss Nashaat

Signature	

Researcher Biography

Name : Kyrelloss Nashaat

Date of birth : 10 / 2 / 1991

Place of birth : Cairo, Egypt

Last academic degree : B.Sc.

Field of specialization : Mechatronics

University issued the degree : Ain Shams University

Date of issued degree : 2013

Current job : Teaching assistant

Acknowledgement

First and foremost, praises and thanks to God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research supervisors, Professor Sherif Hammd, Head of the Mechatronics department at Ain Shams University, Dr. Mohamed Abdelaziz and Dr. Maged Ghoneima for giving me the opportunity to do research and providing invaluable guidance throughout this research. Their dynamism, vision, sincerity and motivation have deeply inspired me. It was a great privilege and honor to work and study under their guidance.

I'm also extremely grateful to my family for their love, prayers, caring and sacrifices for educating and preparing me for my future. I am very much thankful to my wife for always believing in me and her encouragement and everlasting support for me to complete this research work.

I would like to say thank you for all my colleagues, professors and staff in the Mechatronics department at Ain Shams University especially Dr. Mohamed Ibrahim for his technical help and support through this research work, Dr. Omar Shihata for his support and motivation from my first steps in seeking the Master degree and my dear colleague Murad Dawood for his aid and support.

Finally, many thanks go to all the people who have supported me to complete this research work directly or indirectly.

Abstract

One of the biggest problems that face the production of an autonomous vehicle is finding a clear path where the vehicle steers away from static and moving obstacles to prevent any possible accidents, and yet continues moving toward the required destination to fulfill its goal of reaching a desired location. This thesis focuses on the problem of finding a feasible trajectory and a collision-free path for an autonomous vehicle with the presence of many moving obstacles in the environment. We approach this issue by using an analytical method where we consider the kinematic model of the car and the surrounding environment to develop a feasible trajectory with the corresponding steering control and the collision avoidance conditions. The collision-free path generated can be updated in real time once the environment is changed and detected by the car. Matlab simulation is used to provide the results for the analytical method used where obstacles were sometimes fed into the simulation and sometimes randomly generated. Also, an intersection crossing scenarios were simulated to show the ability of the analytical method to be used in a more constrained environment.

The analytical method applied was successful to generate a collision-free path in the simulation scenarios. It enabled the car to navigate the environment and reach the designated end point without collisions.

Keywords: Autonomous Vehicle, Local Path Planning, Trajectory Planning, Motion Planning, Collision Avoidance, Analytical Method, MATLAB.

Table of Contents

Statemer	ıtiv
Research	er Biographyvi
Acknowl	edgementviii
Abstract	x
Table of	Contentsxi
List of Fi	guresxv
List of Ta	ablesxvii
List of Sy	ymbolsxviii
Abbrevia	tionsxx
Chapter	11
-	troduction1
1.1	Importance of autonomous vehicles
1.2	History of autonomous vehicles
1.3	Automation levels
1.4	Autonomous Vehicle Systems Breakdown
1.4	4.1 Perception
1.4	4.2 Localization
1.4	4.3 Path Planning 6
1.4	1.4 Vehicle control
1.5	Non-conventional challenges facing autonomous vehicles
1.:	5.1 Weather Conditions
1.:	5.2 Traffic Laws and Conditions
1.3	5.3 Laws and Regulations
1.3	5.4 Accident Liability

	1.5.5 Artificial versus Emotional Intelligence	7
1.6	6 Thesis objective	8
1.7	7 Thesis outline	8
Chapte	er 2	9
2	Literature Review	9
2.	1 Autonomous Vehicles	9
2.2	2 Path Planning	9
2.3	3 Path Tracking	13
Chapte	er 3	14
3	Autonomous Vehicle Dynamic Modeling	14
3.	1 Kinematic model	14
3.2	2 Holonomic and Nonholonomic Systems	16
	3.2.1 Unicycle Model	18
3.3	3 Chained Form	19
	3.3.1 Unicycle Model Chained Form	20
3.4	4 Car Chained Form Transformation	21
Chapte	er 4	23
4	Proposed Path Planning Algorithm	23
4.7	1 Obstacles	23
4.2	2 Feasible Trajectory	25
4.3	3 Collision Avoidance	26
4.4	4 Feasible Collision-free Trajectory Solution	28
Chapte	er 5	34
5	Path Planning Algorithm Simulations	34
5.1	1 Simulation by MATLAB	34
5.2	2 Advantages of using simulation	35
5.3	3 Simulation A1 – A2	36
	5.3.1 Simulation A1 data	36